ZnO-doped BiOCl nanoparticles for visible-light-driven photocatalysis

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nitin S. Choudhari, Ravindra U. Mene, Pranav P. Bardapurkar, Sanjaykumar N. Dalvi
{"title":"ZnO-doped BiOCl nanoparticles for visible-light-driven photocatalysis","authors":"Nitin S. Choudhari,&nbsp;Ravindra U. Mene,&nbsp;Pranav P. Bardapurkar,&nbsp;Sanjaykumar N. Dalvi","doi":"10.1007/s00339-024-08043-z","DOIUrl":null,"url":null,"abstract":"<div><p>The escalating presence of organic pollutants from industrial activities necessitates urgent measures for their degradation, given their adverse effects on environmental health and ecosystem equilibrium. This study explores the synthesis and characterization of bismuth oxychloride (BiOCl) and zinc oxide (ZnO)-doped BiOCl nanoparticles for enhanced photocatalytic applications. BiOCl, a versatile material with applications in various sectors including cosmetics, pharmaceuticals, and photocatalysis, was synthesized using a novel chemical approach devoid of thermal treatments. ZnO doping induced notable changes in the optical properties of BiOCl, leading to enhanced light absorption within the visible spectrum. Characterization techniques such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and UV-visible spectroscopy were employed to analyze the structural and optical properties of the synthesized materials. XRD analysis confirmed the crystalline nature of BiOCl and doped ZnO, while SEM revealed the morphology and microstructure of the nanoparticles. EDX analysis confirmed the elemental composition of the samples, indicating the presence of Bi, O, Cl, and Zn. UV-visible spectroscopy revealed a red shift in the absorption edge upon ZnO doping, with Tauc curves indicating a direct bandgap of 3.26 eV for BiOCl and 3.35 eV for ZnO-doped BiOCl. This research highlights the potential of ZnO-doped BiOCl nanoparticles as efficient photocatalysts for environmental remediation applications.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"130 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08043-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating presence of organic pollutants from industrial activities necessitates urgent measures for their degradation, given their adverse effects on environmental health and ecosystem equilibrium. This study explores the synthesis and characterization of bismuth oxychloride (BiOCl) and zinc oxide (ZnO)-doped BiOCl nanoparticles for enhanced photocatalytic applications. BiOCl, a versatile material with applications in various sectors including cosmetics, pharmaceuticals, and photocatalysis, was synthesized using a novel chemical approach devoid of thermal treatments. ZnO doping induced notable changes in the optical properties of BiOCl, leading to enhanced light absorption within the visible spectrum. Characterization techniques such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and UV-visible spectroscopy were employed to analyze the structural and optical properties of the synthesized materials. XRD analysis confirmed the crystalline nature of BiOCl and doped ZnO, while SEM revealed the morphology and microstructure of the nanoparticles. EDX analysis confirmed the elemental composition of the samples, indicating the presence of Bi, O, Cl, and Zn. UV-visible spectroscopy revealed a red shift in the absorption edge upon ZnO doping, with Tauc curves indicating a direct bandgap of 3.26 eV for BiOCl and 3.35 eV for ZnO-doped BiOCl. This research highlights the potential of ZnO-doped BiOCl nanoparticles as efficient photocatalysts for environmental remediation applications.

Abstract Image

用于可见光驱动光催化的 ZnO 掺杂 BiOCl 纳米粒子
鉴于工业活动中有机污染物对环境健康和生态系统平衡的不利影响,有必要采取紧急措施降解这些污染物。本研究探讨了氧氯化铋(BiOCl)和氧化锌(ZnO)掺杂的 BiOCl 纳米粒子的合成和表征,以增强其光催化应用。BiOCl 是一种多用途材料,可应用于化妆品、医药和光催化等多个领域。氧化锌的掺杂使 BiOCl 的光学特性发生了显著变化,从而增强了对可见光谱内光的吸收。研究人员采用了 X 射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)、能量色散 X 射线光谱(EDS)和紫外可见光谱等表征技术来分析合成材料的结构和光学特性。XRD 分析证实了 BiOCl 和掺杂 ZnO 的结晶性质,而 SEM 则揭示了纳米颗粒的形态和微观结构。EDX 分析证实了样品的元素组成,表明其中含有 Bi、O、Cl 和 Zn。紫外可见光谱显示,掺杂 ZnO 后,吸收边发生了红移,陶氏曲线表明 BiOCl 的直接带隙为 3.26 eV,而掺杂 ZnO 的 BiOCl 为 3.35 eV。这项研究凸显了氧化锌掺杂的 BiOCl 纳米粒子作为高效光催化剂在环境修复应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信