Sudheer Kumar Nagothu, Pudota Bindu Sri, G. Anitha, Shweta Vincent, Om Prakash Kumar
{"title":"Advancing aquaculture: fuzzy logic-based water quality monitoring and maintenance system for precision aquaculture","authors":"Sudheer Kumar Nagothu, Pudota Bindu Sri, G. Anitha, Shweta Vincent, Om Prakash Kumar","doi":"10.1007/s10499-024-01701-2","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaculture plays a vital role in global food production, and maintaining optimal water quality is essential for the health and growth of aquatic species. This research addresses the need for an efficient, adaptive solution by introducing an innovative water quality monitoring and maintenance system for aquaculture ponds. Unlike conventional systems, our approach uniquely integrates fuzzy logic with IoT technologies to optimise the precision and adaptability of pond management. The system stands out with its continuous monitoring of critical parameters such as temperature, pH, dissolved oxygen (DO), weather conditions and salinity and its ability to autonomously adjust operational controls, such as aerators and water pumps, based on dynamic environmental changes. This ensures ideal water conditions without manual intervention, providing a reliable and effective solution for aquaculture pond management. This work’s novelty lies in applying fuzzy Logic to handle the complexity and variability of aquaculture environments, allowing for nuanced control decisions that improve water quality management. The system’s efficiency was demonstrated through a 72-h operational test, where it maintained optimal DO and salinity levels, showcasing its reliability and effectiveness in real-world conditions. The fuzzy logic model has demonstrated a commendable accuracy rate of 98%. These results validate the system’s performance and underscore its practical benefits, meeting the demands of aquaculture production and significantly enhancing operational efficiency by enabling remote monitoring and rapid issue identification. This research contributes a robust technological solution for aquafarmers, offering a promising advancement in aquaculture management by improving productivity and ensuring the health and growth of aquatic species.</p></div>","PeriodicalId":8122,"journal":{"name":"Aquaculture International","volume":"33 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10499-024-01701-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture International","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10499-024-01701-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Aquaculture plays a vital role in global food production, and maintaining optimal water quality is essential for the health and growth of aquatic species. This research addresses the need for an efficient, adaptive solution by introducing an innovative water quality monitoring and maintenance system for aquaculture ponds. Unlike conventional systems, our approach uniquely integrates fuzzy logic with IoT technologies to optimise the precision and adaptability of pond management. The system stands out with its continuous monitoring of critical parameters such as temperature, pH, dissolved oxygen (DO), weather conditions and salinity and its ability to autonomously adjust operational controls, such as aerators and water pumps, based on dynamic environmental changes. This ensures ideal water conditions without manual intervention, providing a reliable and effective solution for aquaculture pond management. This work’s novelty lies in applying fuzzy Logic to handle the complexity and variability of aquaculture environments, allowing for nuanced control decisions that improve water quality management. The system’s efficiency was demonstrated through a 72-h operational test, where it maintained optimal DO and salinity levels, showcasing its reliability and effectiveness in real-world conditions. The fuzzy logic model has demonstrated a commendable accuracy rate of 98%. These results validate the system’s performance and underscore its practical benefits, meeting the demands of aquaculture production and significantly enhancing operational efficiency by enabling remote monitoring and rapid issue identification. This research contributes a robust technological solution for aquafarmers, offering a promising advancement in aquaculture management by improving productivity and ensuring the health and growth of aquatic species.
期刊介绍:
Aquaculture International is an international journal publishing original research papers, short communications, technical notes and review papers on all aspects of aquaculture.
The Journal covers topics such as the biology, physiology, pathology and genetics of cultured fish, crustaceans, molluscs and plants, especially new species; water quality of supply systems, fluctuations in water quality within farms and the environmental impacts of aquacultural operations; nutrition, feeding and stocking practices, especially as they affect the health and growth rates of cultured species; sustainable production techniques; bioengineering studies on the design and management of offshore and land-based systems; the improvement of quality and marketing of farmed products; sociological and societal impacts of aquaculture, and more.
This is the official Journal of the European Aquaculture Society.