{"title":"NaOH-treated rice husk, a lignocellulosic biomaterial for removal of Cr(VI) from polluted water","authors":"Parminder Kaur, Kalpana Raghuvanshi, Sandeep Kumar, Atul Kumar","doi":"10.1007/s00289-024-05523-3","DOIUrl":null,"url":null,"abstract":"<div><p>Rice husk is an inexpensive and readily available adsorbent for heavy metal ions, though its natural form lacks sufficient adsorption capacity. This study focuses on improving its ability to adsorb Cr(VI) by treating it with NaOH. After treatment with 1N NaOH at 90 °C for 4 h, the adsorption efficiency of rice husk for Cr(VI) increased by almost 30%. Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy revealed an increase in the cellulosic content of the treated rice husk, while X-ray diffraction indicated the formation of new polymorphs and enhanced crystallinity of the cellulose fraction. Among the applied isotherms, the Redlich-Peterson and Langmuir models best described the adsorption, suggesting both monolayer and multilayer adsorption. The maximum monolayer adsorption capacities were determined to be 18.9, 21.1, and 22.9 mg g<sup>−1</sup> at 303 K, 313 K, and 323 K, respectively. The kinetic data fit well with pseudo-second-order and Elovich models, confirming the chemical nature of the adsorption process. Activation energy, along with other kinetic and thermodynamic parameters, showed that the process is endothermic, involving both physical and chemical interactions. FT-IR analysis identified various functional groups involved in the chemical interaction with chromium, while XPS confirmed that all adsorbed chromium was in the + 3 oxidation state. The presence of interfering anions reduced the adsorption efficiency of NaOH-treated rice husk for Cr(VI), regardless of the anion type, while regeneration studies showed that the adsorbent could be reused for up to five adsorption–desorption cycles.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 18","pages":"17265 - 17298"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05523-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Rice husk is an inexpensive and readily available adsorbent for heavy metal ions, though its natural form lacks sufficient adsorption capacity. This study focuses on improving its ability to adsorb Cr(VI) by treating it with NaOH. After treatment with 1N NaOH at 90 °C for 4 h, the adsorption efficiency of rice husk for Cr(VI) increased by almost 30%. Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy revealed an increase in the cellulosic content of the treated rice husk, while X-ray diffraction indicated the formation of new polymorphs and enhanced crystallinity of the cellulose fraction. Among the applied isotherms, the Redlich-Peterson and Langmuir models best described the adsorption, suggesting both monolayer and multilayer adsorption. The maximum monolayer adsorption capacities were determined to be 18.9, 21.1, and 22.9 mg g−1 at 303 K, 313 K, and 323 K, respectively. The kinetic data fit well with pseudo-second-order and Elovich models, confirming the chemical nature of the adsorption process. Activation energy, along with other kinetic and thermodynamic parameters, showed that the process is endothermic, involving both physical and chemical interactions. FT-IR analysis identified various functional groups involved in the chemical interaction with chromium, while XPS confirmed that all adsorbed chromium was in the + 3 oxidation state. The presence of interfering anions reduced the adsorption efficiency of NaOH-treated rice husk for Cr(VI), regardless of the anion type, while regeneration studies showed that the adsorbent could be reused for up to five adsorption–desorption cycles.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."