{"title":"Carbon nanotube/polyvinylidene fluoride flexible composite material with low percolation threshold and adjustable negative permittivity","authors":"Zuxiang Mu, Yinuo Sun, Zhaocun Shen, Gemeng Liang, Jinshuo Zou, Peitao Xie","doi":"10.1007/s42114-024-01049-4","DOIUrl":null,"url":null,"abstract":"<div><p>In the interdisciplinary fields of materials science, electromagnetics, and optics, the negative dielectric constant, as a unique physical property, is gradually attracting widespread attention from the academic and industrial communities. Materials with negative dielectric constant impose strict requirements on the value and flexibility of the negative dielectric constant in today’s diverse development. In this study, a flexible carbon nanotube (CNTs)/polyvinylidene fluoride (PVDF) composite film with a low percolation threshold of negative dielectric constant was prepared using a casting method, with a percolation threshold of only 9 wt%. By varying the CNTs content, the intensity of both positive and negative dielectric constant responses can be tuned. The research revealed that the conduction mechanism involves both hopping conduction and metal-like conduction. Notably, at the CNTs content of 11 wt%, a negative dielectric constant was observed across the entire frequency range, showing a Drude-Lorentz-type dispersion. The composite materials with lower CNTs content exhibited dielectric loss primarily at low frequencies, while those with higher CNTs content showed dielectric loss across the full frequency range. This work demonstrates a cost-effective and straightforward approach for controlling negative dielectric constants, which holds promise for applications in electronic devices and electromagnetic shielding.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01049-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
In the interdisciplinary fields of materials science, electromagnetics, and optics, the negative dielectric constant, as a unique physical property, is gradually attracting widespread attention from the academic and industrial communities. Materials with negative dielectric constant impose strict requirements on the value and flexibility of the negative dielectric constant in today’s diverse development. In this study, a flexible carbon nanotube (CNTs)/polyvinylidene fluoride (PVDF) composite film with a low percolation threshold of negative dielectric constant was prepared using a casting method, with a percolation threshold of only 9 wt%. By varying the CNTs content, the intensity of both positive and negative dielectric constant responses can be tuned. The research revealed that the conduction mechanism involves both hopping conduction and metal-like conduction. Notably, at the CNTs content of 11 wt%, a negative dielectric constant was observed across the entire frequency range, showing a Drude-Lorentz-type dispersion. The composite materials with lower CNTs content exhibited dielectric loss primarily at low frequencies, while those with higher CNTs content showed dielectric loss across the full frequency range. This work demonstrates a cost-effective and straightforward approach for controlling negative dielectric constants, which holds promise for applications in electronic devices and electromagnetic shielding.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.