Improved performance of a SWCNT/ZnO nanostructure-integrated silicon thin-film solar cell: role of annealing temperature

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nandang Mufti, Olga Dilivia Ardilla, Erma Surya Yuliana, Retno Fitri Wulandari, Ahmad Taufiq, Henry Setiyanto, Muhammad Aziz, Ali Aqeel Salim, Risa Suryana and Wilman Septina
{"title":"Improved performance of a SWCNT/ZnO nanostructure-integrated silicon thin-film solar cell: role of annealing temperature","authors":"Nandang Mufti, Olga Dilivia Ardilla, Erma Surya Yuliana, Retno Fitri Wulandari, Ahmad Taufiq, Henry Setiyanto, Muhammad Aziz, Ali Aqeel Salim, Risa Suryana and Wilman Septina","doi":"10.1039/D4MA00726C","DOIUrl":null,"url":null,"abstract":"<p >Efficiency improvement of heterogeneous silicon thin-film solar cells (SiTFSCs) remains challenging. Thus, single-walled carbon nanotube (SWCNT) and zinc oxide nanostructures (ZnO NCs) were integrated into Si thin films using the spray-spin coating approach to realize such solar cells. The effect of various annealing temperatures (100–175 °C) on the solar cells’ efficiency, structure, morphology, and absorbance was assessed. X-ray diffraction analysis confirmed the existence of highly crystalline wurtzite and hexagonal structures corresponding to ZnO and graphite with maximum nanocrystallite sizes of 51.92 nm. Scanning electron microscopy images of the samples showed uniform surface morphology without any aggregation. In addition, with the increase of the annealing temperature from 100 to 175 °C, the efficiency, porosity, optical absorbance bands, and band gap energy of the films were increased from 17.0–18.6%, 70–74.8%, 246–326 nm, and 2.0–2.5 eV, respectively. It was asserted that by controlling the annealing temperature, the overall performance of the proposed SWCNT/ZnO NC-integrated SiTFSC can be enhanced, contributing to the further advancement of high-performance Si-based photovoltaics.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 9018-9031"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00726c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00726c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiency improvement of heterogeneous silicon thin-film solar cells (SiTFSCs) remains challenging. Thus, single-walled carbon nanotube (SWCNT) and zinc oxide nanostructures (ZnO NCs) were integrated into Si thin films using the spray-spin coating approach to realize such solar cells. The effect of various annealing temperatures (100–175 °C) on the solar cells’ efficiency, structure, morphology, and absorbance was assessed. X-ray diffraction analysis confirmed the existence of highly crystalline wurtzite and hexagonal structures corresponding to ZnO and graphite with maximum nanocrystallite sizes of 51.92 nm. Scanning electron microscopy images of the samples showed uniform surface morphology without any aggregation. In addition, with the increase of the annealing temperature from 100 to 175 °C, the efficiency, porosity, optical absorbance bands, and band gap energy of the films were increased from 17.0–18.6%, 70–74.8%, 246–326 nm, and 2.0–2.5 eV, respectively. It was asserted that by controlling the annealing temperature, the overall performance of the proposed SWCNT/ZnO NC-integrated SiTFSC can be enhanced, contributing to the further advancement of high-performance Si-based photovoltaics.

Abstract Image

提高集成了 SWCNT/ZnO 纳米结构的硅薄膜太阳能电池的性能:退火温度的作用
提高异质硅薄膜太阳能电池(SiTFSCs)的效率仍然具有挑战性。因此,为了实现这种太阳能电池,研究人员采用喷旋镀膜方法将单壁碳纳米管(SWCNT)和氧化锌纳米结构(ZnO NCs)集成到硅薄膜中。评估了不同退火温度(100-175 °C)对太阳能电池的效率、结构、形态和吸光度的影响。X 射线衍射分析证实,存在与氧化锌和石墨相对应的高结晶菱面体和六方体结构,最大纳米晶粒尺寸为 51.92 nm。样品的扫描电子显微镜图像显示出均匀的表面形态,没有任何聚集现象。此外,随着退火温度从 100 ℃ 升高到 175 ℃,薄膜的效率、孔隙率、光学吸光度带和带隙能分别从 17.0%-18.6%、70%-74.8%、246-326 nm 和 2.0-2.5 eV 增加。研究认为,通过控制退火温度,可以提高所提出的 SWCNT/ZnO NC 集成 SiTFSC 的整体性能,为进一步推动高性能硅基光伏技术的发展做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信