{"title":"Exciton Dipole Orientation and Dynamic Reactivity Synergistically Enable Overall Water Splitting in Covalent Organic Frameworks","authors":"Qing Niu, Wenfeng Deng, Yanlei Chen, Qingqing Lin, Liuyi Li, Zheyuan Liu, Jinhong Bi, Yan Yu","doi":"10.1021/acsenergylett.4c02847","DOIUrl":null,"url":null,"abstract":"Covalent organic frameworks (COFs) are promising semiconductor photocatalysts but are still limited in overall water splitting mainly owing to a lack of clear design approaches with which to ameliorate catalytic activities. Here, we demonstrate a synergy of exciton dipole orientation and dynamic reactivity of COFs that enables water splitting for stoichiometric evolution of H<sub>2</sub> and O<sub>2</sub>. The exciton dipole orientation is responsible for driving the spatial separation of photoinduced charges, while the dynamic reactivity of imine bonds of COFs with water and holes is proven for initiating water oxidation. Accordingly, a rationally designed BtS-COF with benzotrithiophene and sulfone units exhibits a much-improved performance in H<sub>2</sub> and O<sub>2</sub> evolution in neutral water under visible light. Its catalytic efficiency is even superior to some photocatalysts with metal-based water oxidation cocatalyst.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"63 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02847","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs) are promising semiconductor photocatalysts but are still limited in overall water splitting mainly owing to a lack of clear design approaches with which to ameliorate catalytic activities. Here, we demonstrate a synergy of exciton dipole orientation and dynamic reactivity of COFs that enables water splitting for stoichiometric evolution of H2 and O2. The exciton dipole orientation is responsible for driving the spatial separation of photoinduced charges, while the dynamic reactivity of imine bonds of COFs with water and holes is proven for initiating water oxidation. Accordingly, a rationally designed BtS-COF with benzotrithiophene and sulfone units exhibits a much-improved performance in H2 and O2 evolution in neutral water under visible light. Its catalytic efficiency is even superior to some photocatalysts with metal-based water oxidation cocatalyst.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.