Local Performance Analysis of Perovskite Solar Cells: Implications and Perspectives

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zexin Yu, Chunlei Zhang, Bo Li, Xin Wu, Xintong Li, Danpeng Gao, Zonglong Zhu
{"title":"Local Performance Analysis of Perovskite Solar Cells: Implications and Perspectives","authors":"Zexin Yu, Chunlei Zhang, Bo Li, Xin Wu, Xintong Li, Danpeng Gao, Zonglong Zhu","doi":"10.1021/acsenergylett.4c01379","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) have emerged as a leading photovoltaic technology due to their high efficiency and cost-effectiveness, yet long-term stability and consistent performance remain challenges. This perspective discusses how local structural properties, such as grain boundaries and intragrain defects, and optoelectronic properties, including charge transfer and recombination processes, affect PSC performance, emphasizing the role of advanced imaging and mapping techniques in characterizing these properties. Additionally, the perspective extends to the stability of perovskite materials and devices, exploring how imaging and mapping techniques reveal degradation caused by environmental factors such as humidity, temperature, light, and electrical bias. Furthermore, this perspective also discusses the limitations of these local performance analyses, such as characterization scope, resolution, and sensitivity issues, as well as challenges in quantitative analysis. Understanding these constraints is essential for refining local performance analysis methods and advancing perovskite solar cell technology toward more reliable and efficient photovoltaic devices.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"34 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01379","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) have emerged as a leading photovoltaic technology due to their high efficiency and cost-effectiveness, yet long-term stability and consistent performance remain challenges. This perspective discusses how local structural properties, such as grain boundaries and intragrain defects, and optoelectronic properties, including charge transfer and recombination processes, affect PSC performance, emphasizing the role of advanced imaging and mapping techniques in characterizing these properties. Additionally, the perspective extends to the stability of perovskite materials and devices, exploring how imaging and mapping techniques reveal degradation caused by environmental factors such as humidity, temperature, light, and electrical bias. Furthermore, this perspective also discusses the limitations of these local performance analyses, such as characterization scope, resolution, and sensitivity issues, as well as challenges in quantitative analysis. Understanding these constraints is essential for refining local performance analysis methods and advancing perovskite solar cell technology toward more reliable and efficient photovoltaic devices.

Abstract Image

Perovskite 太阳能电池的局部性能分析:影响和前景
过氧化物太阳能电池(PSCs)因其高效率和高成本效益而成为领先的光伏技术,但其长期稳定性和持续性能仍面临挑战。本视角讨论了局部结构特性(如晶界和晶粒内缺陷)和光电特性(包括电荷转移和重组过程)如何影响 PSC 性能,强调了先进成像和制图技术在表征这些特性方面的作用。此外,该视角还延伸到了包晶材料和器件的稳定性,探讨了成像和制图技术如何揭示湿度、温度、光线和电偏压等环境因素造成的降解。此外,本视角还讨论了这些局部性能分析的局限性,如表征范围、分辨率和灵敏度问题,以及定量分析方面的挑战。了解这些限制因素对于改进局部性能分析方法和推动包晶体太阳能电池技术朝着更可靠、更高效的光伏设备方向发展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信