Mitigating Mechanical Stress by the Hierarchical Crystalline Domain for High-Energy P2/O3 Biphasic Cathode Materials

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-11-10 DOI:10.1021/acsnano.4c09918
Xu Zhu, Haojie Dong, Yifeng Liu, Yi-Hu Feng, Yongwei Tang, Lianzheng Yu, Shao-Wen Xu, Guang-Xu Wei, Shuai Sun, Mengting Liu, Bing Xiao, Rong Xu, Yao Xiao, Shulei Chou, Peng-Fei Wang
{"title":"Mitigating Mechanical Stress by the Hierarchical Crystalline Domain for High-Energy P2/O3 Biphasic Cathode Materials","authors":"Xu Zhu, Haojie Dong, Yifeng Liu, Yi-Hu Feng, Yongwei Tang, Lianzheng Yu, Shao-Wen Xu, Guang-Xu Wei, Shuai Sun, Mengting Liu, Bing Xiao, Rong Xu, Yao Xiao, Shulei Chou, Peng-Fei Wang","doi":"10.1021/acsnano.4c09918","DOIUrl":null,"url":null,"abstract":"Sodium-ion batteries (SIBs) have captured widespread attention for grid-scale energy storage owing to the wide distribution and low cost of sodium resources. Delivery of high energy density with stable retention remains a challenge in developing cathode candidates for rechargeable SIBs. Inspired by the concept of “cationic potential”, here, we present a hierarchical crystalline domain in hexagonal particles with target chemical composition (Na<sub>0.8</sub>Li<sub>0.03</sub>Mg<sub>0.05</sub>Ni<sub>0.28</sub>Fe<sub>0.05</sub>Mn<sub>0.54</sub>Ti<sub>0.05</sub>O<sub>2</sub>) from the inner bulk O3 phase (71.1 wt %) to the outer P2-type shell (28.9 wt %) of the structure. Benefiting from the mitigated mechanical stress of the predominant bulk O3 phase under the protection of the surficial P2 crystalline domain at the microscale during Na<sup>+</sup> (de)intercalation, the brittle fracture, plastic yielding, and structural damage of the bulk O3 phase are effectively prohibited during battery cycling, thereby achieving good structural integrity. As a consequence, the biphasic P2/O3–Na<sub>0.8</sub>Li<sub>0.03</sub>Mg<sub>0.05</sub>Ni<sub>0.28</sub>Fe<sub>0.05</sub>Mn<sub>0.54</sub>Ti<sub>0.05</sub>O<sub>2</sub> material exhibits satisfactory electrochemical properties, with a high energy density of 506 Wh kg<sup>–1</sup> and good capacity retention of 85.5% over 200 cycles. This work highlights the importance of tailoring the crystalline domain to mitigate the reaction-induced stress and particle fracture of layered biphasic cathode materials for high-energy SIBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"37 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09918","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (SIBs) have captured widespread attention for grid-scale energy storage owing to the wide distribution and low cost of sodium resources. Delivery of high energy density with stable retention remains a challenge in developing cathode candidates for rechargeable SIBs. Inspired by the concept of “cationic potential”, here, we present a hierarchical crystalline domain in hexagonal particles with target chemical composition (Na0.8Li0.03Mg0.05Ni0.28Fe0.05Mn0.54Ti0.05O2) from the inner bulk O3 phase (71.1 wt %) to the outer P2-type shell (28.9 wt %) of the structure. Benefiting from the mitigated mechanical stress of the predominant bulk O3 phase under the protection of the surficial P2 crystalline domain at the microscale during Na+ (de)intercalation, the brittle fracture, plastic yielding, and structural damage of the bulk O3 phase are effectively prohibited during battery cycling, thereby achieving good structural integrity. As a consequence, the biphasic P2/O3–Na0.8Li0.03Mg0.05Ni0.28Fe0.05Mn0.54Ti0.05O2 material exhibits satisfactory electrochemical properties, with a high energy density of 506 Wh kg–1 and good capacity retention of 85.5% over 200 cycles. This work highlights the importance of tailoring the crystalline domain to mitigate the reaction-induced stress and particle fracture of layered biphasic cathode materials for high-energy SIBs.

Abstract Image

通过分层晶域减轻高能 P2/O3 双相阴极材料的机械应力
由于钠资源分布广泛且成本低廉,钠离子电池(SIB)在电网规模的能源存储方面受到广泛关注。在开发可充电钠离子电池的阴极候选材料时,如何在提供高能量密度的同时保持稳定仍然是一个挑战。受 "阳离子势能 "概念的启发,我们在此提出了一种具有目标化学成分(Na0.8Li0.03Mg0.05Ni0.28Fe0.05Mn0.54Ti0.05O2)的六边形颗粒中的分层晶域,其结构从内部的块状 O3 相(71.1 wt %)到外部的 P2- 型外壳(28.9 wt %)。在 Na+(脱)插层过程中,在微尺度表面 P2 结晶畴的保护下,占主导地位的块状 O3 相的机械应力得到了缓解,因此在电池循环过程中,块状 O3 相的脆性断裂、塑性屈服和结构破坏均被有效禁止,从而实现了良好的结构完整性。因此,P2/O3-Na0.8Li0.03Mg0.05Ni0.28Fe0.05Mn0.54Ti0.05O2 双相材料表现出令人满意的电化学性能,能量密度高达 506 Wh kg-1,200 次循环后容量保持率高达 85.5%。这项工作强调了定制晶域以减轻高能 SIB 的层状双相阴极材料的反应诱导应力和颗粒断裂的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信