Murat Ozlek, Merve Sehnaz Akbulut and Engin Burgaz
{"title":"Exploring graphene's impact on graphite/PANI matrix composites: high-pressure fabrication and enhanced thermal-electrical properties†","authors":"Murat Ozlek, Merve Sehnaz Akbulut and Engin Burgaz","doi":"10.1039/D4NR03171G","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the effects of the graphene content and applied pressure on the electrical and thermal conductivities of graphite/polyaniline (GP) and graphite/graphene/polyaniline (GGP) composites produced <em>via</em> direct mixing method. Based on the electrical and thermal conductivity results, 14 wt% graphene content was found to be the crucial threshold, beyond which extra graphene additions exhibited different behaviors in pressed and unpressed samples. While the electrical conductivity of the unpressed samples increased up to 14 wt% graphene addition, the thermal conductivity increased further after 14 wt% graphene addition. The addition of graphene induced notable changes in the electronic configurations of quinoid and benzenoid rings, as evidenced by ATR-FT-IR spectroscopy. Based on XPS data, the addition of graphene to the graphite/PANI-CSA matrix affected the electronic distribution and charge transfer mechanisms within the GGP composites, particularly showing the impact of graphene addition on the electronic structure of PANI-CSA in the GGP-14 527 MPa sample. Importantly, the interlocking of graphene and graphite layers observed in the GGP-14 sample pressed at 527 MPa (according to Raman and XRD data) led to enhanced thermal (2253 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>) and electrical (210 S cm<small><sup>−1</sup></small>) conductivity. The interlocked configuration of graphene and graphite in GGP-14 527 MPa facilitated efficient electron and phonon flow throughout the hexagonal C<img>C rings and partially charged nitrogen and oxygen atoms of PANI-CSA. In future work, the concept of interlocked graphene and graphite layers can be used to further enhance the thermal and electrical properties in thermoelectric material applications.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 1","pages":" 552-566"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03171g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of the graphene content and applied pressure on the electrical and thermal conductivities of graphite/polyaniline (GP) and graphite/graphene/polyaniline (GGP) composites produced via direct mixing method. Based on the electrical and thermal conductivity results, 14 wt% graphene content was found to be the crucial threshold, beyond which extra graphene additions exhibited different behaviors in pressed and unpressed samples. While the electrical conductivity of the unpressed samples increased up to 14 wt% graphene addition, the thermal conductivity increased further after 14 wt% graphene addition. The addition of graphene induced notable changes in the electronic configurations of quinoid and benzenoid rings, as evidenced by ATR-FT-IR spectroscopy. Based on XPS data, the addition of graphene to the graphite/PANI-CSA matrix affected the electronic distribution and charge transfer mechanisms within the GGP composites, particularly showing the impact of graphene addition on the electronic structure of PANI-CSA in the GGP-14 527 MPa sample. Importantly, the interlocking of graphene and graphite layers observed in the GGP-14 sample pressed at 527 MPa (according to Raman and XRD data) led to enhanced thermal (2253 W m−1 K−1) and electrical (210 S cm−1) conductivity. The interlocked configuration of graphene and graphite in GGP-14 527 MPa facilitated efficient electron and phonon flow throughout the hexagonal CC rings and partially charged nitrogen and oxygen atoms of PANI-CSA. In future work, the concept of interlocked graphene and graphite layers can be used to further enhance the thermal and electrical properties in thermoelectric material applications.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.