Magnesium Fluoride Interlayers Enabled by Wet‐Chemical Process for High‐Performance Solid‐State Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Meiqi Jia, Ting‐Ting Wu, Si‐Dong Zhang, Sijie Guo, Yongzhu Fu, An‐Min Cao
{"title":"Magnesium Fluoride Interlayers Enabled by Wet‐Chemical Process for High‐Performance Solid‐State Batteries","authors":"Meiqi Jia, Ting‐Ting Wu, Si‐Dong Zhang, Sijie Guo, Yongzhu Fu, An‐Min Cao","doi":"10.1002/adfm.202415542","DOIUrl":null,"url":null,"abstract":"Garnet‐type solid‐state electrolytes (SSEs) exemplified by Li<jats:sub>6.5</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>1.5</jats:sub>Ta<jats:sub>0.5</jats:sub>O<jats:sub>12</jats:sub> (LLZT) are chemically unstable when exposed to air, leading to the formation of impurities and poor wettability with Li metal. Herein, a protocol to address this Li/LLZT interface challenge is demonstrated by constructing a lithiophilic MgF<jats:sub>2</jats:sub> nanofilm on the LLZT pellet. Specifically, a solution‐based process is developed for the surface engineering of LLZT, utilizing magnesium trifluoroacetate (MTF) as the molecular precursor while poly(acrylic acid) (PAA) as the coordinating agent in a sol‐gel process. It is demonstrated that a facile spin‐coating treatment followed by high‐temperature annealing reliably forms crack‐free MgF<jats:sub>2</jats:sub> nanofilms with precise thickness control. Introduction an MgF<jats:sub>2</jats:sub> interlayer transforms the LLZT pellet into a highly lithophilic, facilitating close contact with the lithium anode, thereby leading to a significantly reduced interfacial resistance from 1190 Ω cm<jats:sup>2</jats:sup> to 6 Ω cm<jats:sup>2</jats:sup>. Such an interfacial engineering enables stable cycling of full batteries with high reversibility and rate capability using commercial LiFePO<jats:sub>4</jats:sub> and LiNi<jats:sub>0.83</jats:sub>Co<jats:sub>0.07</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> as cathodes. This study unfolds the possibility of a solution‐based method as a facile and scalable process for the construction of fluoride nanofilms, which is promising to address the critical interfacial challenges of solid‐state batteries (SSBs) to facilitate its practical applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415542","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Garnet‐type solid‐state electrolytes (SSEs) exemplified by Li6.5La3Zr1.5Ta0.5O12 (LLZT) are chemically unstable when exposed to air, leading to the formation of impurities and poor wettability with Li metal. Herein, a protocol to address this Li/LLZT interface challenge is demonstrated by constructing a lithiophilic MgF2 nanofilm on the LLZT pellet. Specifically, a solution‐based process is developed for the surface engineering of LLZT, utilizing magnesium trifluoroacetate (MTF) as the molecular precursor while poly(acrylic acid) (PAA) as the coordinating agent in a sol‐gel process. It is demonstrated that a facile spin‐coating treatment followed by high‐temperature annealing reliably forms crack‐free MgF2 nanofilms with precise thickness control. Introduction an MgF2 interlayer transforms the LLZT pellet into a highly lithophilic, facilitating close contact with the lithium anode, thereby leading to a significantly reduced interfacial resistance from 1190 Ω cm2 to 6 Ω cm2. Such an interfacial engineering enables stable cycling of full batteries with high reversibility and rate capability using commercial LiFePO4 and LiNi0.83Co0.07Mn0.1O2 as cathodes. This study unfolds the possibility of a solution‐based method as a facile and scalable process for the construction of fluoride nanofilms, which is promising to address the critical interfacial challenges of solid‐state batteries (SSBs) to facilitate its practical applications.
采用湿化学工艺制造的氟化镁夹层用于高性能固态电池
以 Li6.5La3Zr1.5Ta0.5O12(LLZT)为代表的石榴石型固态电解质(SSE)暴露在空气中时化学性质不稳定,会形成杂质并导致与锂金属的润湿性变差。本文通过在 LLZT 颗粒上构建亲锂 MgF2 纳米薄膜,展示了解决锂/LLZT 界面难题的方案。具体来说,在溶胶-凝胶工艺中,利用三氟乙酸镁(MTF)作为分子前驱体,聚丙烯酸(PAA)作为配位剂,开发了一种基于溶液的 LLZT 表面工程工艺。研究表明,通过简单的旋涂处理和高温退火,可以可靠地形成无裂纹的 MgF2 纳米薄膜,并能精确控制厚度。引入 MgF2 中间膜可将 LLZT 颗粒转化为高度亲锂的颗粒,有利于与锂阳极紧密接触,从而使界面电阻从 1190 Ω cm2 显著降低到 6 Ω cm2。这样的界面工程使得使用商用磷酸铁锂和 LiNi0.83Co0.07Mn0.1O2 作为正极的全电池能够稳定循环,并具有高还原性和高倍率能力。这项研究揭示了基于溶液的方法作为构建氟化物纳米薄膜的简便、可扩展工艺的可能性,有望解决固态电池(SSB)的关键界面难题,促进其实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信