{"title":"CeO2‐Accelerated Surface Reconstruction of CoSe2 Nanoneedle Forms Active CeO2@CoOOH Interface to Boost Oxygen Evolution Reaction for Water Splitting","authors":"Quanxin Guo, Yu Li, Zhengrong Xu, Rui Liu","doi":"10.1002/aenm.202403744","DOIUrl":null,"url":null,"abstract":"Interface engineering is an efficient strategy to create high‐performance electrocatalysts for water splitting. In the present work, CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub> nanoneedle on carbon cloth (CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub>/CC) demonstrates high efficiency for oxygen evolution reaction (OER) and water splitting. CeO<jats:sub>2</jats:sub> with abundant O vacancies facilitates the adsorption of OH<jats:sup>−</jats:sup> and boosts the reconstruction of CoSe<jats:sub>2</jats:sub> into CoOOH at lower potentials. The in situ generated active CeO<jats:sub>2</jats:sub>@CoOOH heterointerface upshifts the d‐band center of Co site, thereby decreasing the free energy of rate‐determining step (RDS) (<jats:sup>*</jats:sup>O to <jats:sup>*</jats:sup>OOH) during the OER process. It delivers a low OER overpotential of 245 mV at 10 mA cm<jats:sup>−2</jats:sup>. CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub>/CC is also found to be active for hydrogen evolution reaction (HER, 138 mV overpotential at 10 mA cm<jats:sup>−2</jats:sup>), profiting from CeO<jats:sub>2</jats:sub>‐facilitated <jats:sup>*</jats:sup>H<jats:sub>2</jats:sub>O dissociation and <jats:sup>*</jats:sup>H adsorption on CoSe<jats:sub>2</jats:sub>. The overall water splitting is achieved over the CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub>/CC bifunctional electrode with a low electrolysis voltage of 1.54 V at 10 mA cm<jats:sup>−2</jats:sup>. This work offers valuable insights into CeO<jats:sub>2</jats:sub>‐assisted surface reconstruction as well as provides water electrolysis catalysts through interface engineering.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"19 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403744","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Interface engineering is an efficient strategy to create high‐performance electrocatalysts for water splitting. In the present work, CeO2@CoSe2 nanoneedle on carbon cloth (CeO2@CoSe2/CC) demonstrates high efficiency for oxygen evolution reaction (OER) and water splitting. CeO2 with abundant O vacancies facilitates the adsorption of OH− and boosts the reconstruction of CoSe2 into CoOOH at lower potentials. The in situ generated active CeO2@CoOOH heterointerface upshifts the d‐band center of Co site, thereby decreasing the free energy of rate‐determining step (RDS) (*O to *OOH) during the OER process. It delivers a low OER overpotential of 245 mV at 10 mA cm−2. CeO2@CoSe2/CC is also found to be active for hydrogen evolution reaction (HER, 138 mV overpotential at 10 mA cm−2), profiting from CeO2‐facilitated *H2O dissociation and *H adsorption on CoSe2. The overall water splitting is achieved over the CeO2@CoSe2/CC bifunctional electrode with a low electrolysis voltage of 1.54 V at 10 mA cm−2. This work offers valuable insights into CeO2‐assisted surface reconstruction as well as provides water electrolysis catalysts through interface engineering.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.