Unlocking recent progress in niobium and vanadium carbide-based MXenes for sodium-ion batteries

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
K. Karuppasamy, Ganesh Kumar Veerasubramani, Vishwanath Hiremath, Dhanasekaran Vikraman, Palanisamy Santhoshkumar, Georgios N. Karanikolos, Ali Abdulkareem Alhammadi, Hyun-Seok Kim, Akram Alfantazi
{"title":"Unlocking recent progress in niobium and vanadium carbide-based MXenes for sodium-ion batteries","authors":"K. Karuppasamy, Ganesh Kumar Veerasubramani, Vishwanath Hiremath, Dhanasekaran Vikraman, Palanisamy Santhoshkumar, Georgios N. Karanikolos, Ali Abdulkareem Alhammadi, Hyun-Seok Kim, Akram Alfantazi","doi":"10.1039/d4ta05669h","DOIUrl":null,"url":null,"abstract":"The performance of electrochemical energy storage (EES) devices is determined by the inherent characteristics of electrode materials such as anodes and cathodes. 2D materials are increasingly being studied for their unique structural and electrochemical properties. Various materials, including transition metal oxides, metal sulfides, phosphides, and metal-organic framework (MOF) compounds, have been explored as potential anodes for sodium storage. However, challenges include significant volume and conductivity changes, cyclability, low capacity, and hindered overall rate performance in sodium-ion batteries (SIBs). Employing 2D-layered transition metal carbides and nitrides (MXenes) and their functionalized/surface-modified composites provides a promising strategy for minimizing volume expansion during charge-discharge, mass-transport properties, and enhancing conductivity, thereby improving the specific capacity, rate capability, and cycling stability of SIBs. This review examines the ability of two specific MXene compounds, namely niobium carbide (Nb-C) and vanadium carbide (VC), to be advanced electrode materials for enhancing the performance of SIBs. Furthermore, it comprehensively analyses recent developments in SIB anodes based on Nb-C and VC hybrid materials, shedding light on their electrochemical and structural properties. Last, the crucial challenges of Nb-C and VC electrodes employed in SIBs are explained, and future insights into the SIB application of these electrodes are elaborated.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"127 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta05669h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of electrochemical energy storage (EES) devices is determined by the inherent characteristics of electrode materials such as anodes and cathodes. 2D materials are increasingly being studied for their unique structural and electrochemical properties. Various materials, including transition metal oxides, metal sulfides, phosphides, and metal-organic framework (MOF) compounds, have been explored as potential anodes for sodium storage. However, challenges include significant volume and conductivity changes, cyclability, low capacity, and hindered overall rate performance in sodium-ion batteries (SIBs). Employing 2D-layered transition metal carbides and nitrides (MXenes) and their functionalized/surface-modified composites provides a promising strategy for minimizing volume expansion during charge-discharge, mass-transport properties, and enhancing conductivity, thereby improving the specific capacity, rate capability, and cycling stability of SIBs. This review examines the ability of two specific MXene compounds, namely niobium carbide (Nb-C) and vanadium carbide (VC), to be advanced electrode materials for enhancing the performance of SIBs. Furthermore, it comprehensively analyses recent developments in SIB anodes based on Nb-C and VC hybrid materials, shedding light on their electrochemical and structural properties. Last, the crucial challenges of Nb-C and VC electrodes employed in SIBs are explained, and future insights into the SIB application of these electrodes are elaborated.
揭示钠离子电池用碳化铌和碳化钒基 MXenes 的最新进展
电化学储能(EES)装置的性能取决于阳极和阴极等电极材料的固有特性。二维材料因其独特的结构和电化学特性而受到越来越多的研究。包括过渡金属氧化物、金属硫化物、磷化物和金属有机框架 (MOF) 化合物在内的各种材料已被探索用作潜在的钠存储阳极。然而,钠离子电池(SIB)面临的挑战包括:体积和电导率变化大、循环性差、容量低以及整体速率性能受阻。采用二维层状过渡金属碳化物和氮化物(MXenes)及其功能化/表面改性复合材料是一种很有前景的策略,可最大限度地减少充放电过程中的体积膨胀、质量传输特性并提高电导率,从而提高 SIB 的比容量、速率能力和循环稳定性。本综述研究了两种特定的 MXene 化合物(即碳化铌(Nb-C)和碳化钒(VC))作为先进电极材料提高 SIB 性能的能力。此外,报告还全面分析了基于 Nb-C 和 VC 混合材料的 SIB 阳极的最新发展,阐明了它们的电化学和结构特性。最后,还解释了在 SIB 中使用 Nb-C 和 VC 电极所面临的关键挑战,并阐述了这些电极在 SIB 应用中的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信