Structural basis of the mechanism and inhibition of a human ceramide synthase

Tomas C. Pascoa, Ashley C. W. Pike, Christofer S. Tautermann, Gamma Chi, Michael Traub, Andrew Quigley, Rod Chalk, Saša Štefanić, Sven Thamm, Alexander Pautsch, Elisabeth P. Carpenter, Gisela Schnapp, David B. Sauer
{"title":"Structural basis of the mechanism and inhibition of a human ceramide synthase","authors":"Tomas C. Pascoa, Ashley C. W. Pike, Christofer S. Tautermann, Gamma Chi, Michael Traub, Andrew Quigley, Rod Chalk, Saša Štefanić, Sven Thamm, Alexander Pautsch, Elisabeth P. Carpenter, Gisela Schnapp, David B. Sauer","doi":"10.1038/s41594-024-01414-3","DOIUrl":null,"url":null,"abstract":"<p>Ceramides are bioactive sphingolipids crucial for regulating cellular metabolism. Ceramides and dihydroceramides are synthesized by six ceramide synthase (CerS) enzymes, each with specificity for different acyl-CoA substrates. Ceramide with a 16-carbon acyl chain (C16 ceramide) has been implicated in obesity, insulin resistance and liver disease and the C16 ceramide-synthesizing CerS6 is regarded as an attractive drug target for obesity-associated disease. Despite their importance, the molecular mechanism underlying ceramide synthesis by CerS enzymes remains poorly understood. Here we report cryo-electron microscopy structures of human CerS6, capturing covalent intermediate and product-bound states. These structures, along with biochemical characterization, reveal that CerS catalysis proceeds through a ping-pong reaction mechanism involving a covalent acyl–enzyme intermediate. Notably, the product-bound structure was obtained upon reaction with the mycotoxin fumonisin B1, yielding insights into its inhibition of CerS. These results provide a framework for understanding CerS function, selectivity and inhibition and open routes for future drug discovery.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-024-01414-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramides are bioactive sphingolipids crucial for regulating cellular metabolism. Ceramides and dihydroceramides are synthesized by six ceramide synthase (CerS) enzymes, each with specificity for different acyl-CoA substrates. Ceramide with a 16-carbon acyl chain (C16 ceramide) has been implicated in obesity, insulin resistance and liver disease and the C16 ceramide-synthesizing CerS6 is regarded as an attractive drug target for obesity-associated disease. Despite their importance, the molecular mechanism underlying ceramide synthesis by CerS enzymes remains poorly understood. Here we report cryo-electron microscopy structures of human CerS6, capturing covalent intermediate and product-bound states. These structures, along with biochemical characterization, reveal that CerS catalysis proceeds through a ping-pong reaction mechanism involving a covalent acyl–enzyme intermediate. Notably, the product-bound structure was obtained upon reaction with the mycotoxin fumonisin B1, yielding insights into its inhibition of CerS. These results provide a framework for understanding CerS function, selectivity and inhibition and open routes for future drug discovery.

Abstract Image

人类神经酰胺合成酶的机制和抑制作用的结构基础
神经酰胺是一种生物活性鞘脂,对调节细胞代谢至关重要。神经酰胺和二氢神经酰胺由六种神经酰胺合成酶(CerS)合成,每种酶对不同的酰基-CoA 底物具有特异性。具有 16 个碳酰基链的神经酰胺(C16 神经酰胺)与肥胖、胰岛素抵抗和肝病有关,而合成 C16 神经酰胺的 CerS6 被认为是治疗肥胖相关疾病的一个有吸引力的药物靶点。尽管它们非常重要,但人们对 CerS 酶合成神经酰胺的分子机制仍然知之甚少。在此,我们报告了人类 CerS6 的冷冻电镜结构,其中捕捉到了共价中间体和产物结合态。这些结构以及生物化学特征显示,CerS 的催化作用是通过涉及共价酰基酶中间体的乒乓反应机制进行的。值得注意的是,在与霉菌毒素伏马菌素 B1 反应时获得了产物结合结构,从而深入了解了伏马菌素 B1 对 CerS 的抑制作用。这些结果为了解 CerS 的功能、选择性和抑制作用提供了一个框架,并为未来的药物发现开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信