High-Performance Solid-State Lithium Metal Batteries of Garnet/Polymer Composite Thin-Film Electrolyte with Domain-Limited Ion Transport Pathways

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chao Wang, Wenxin Li, Dabing Li, Xiaoxue Zhao, Yang Li, Yanling Zhang, Xiang Qi, Meng Wu, Li-Zhen Fan
{"title":"High-Performance Solid-State Lithium Metal Batteries of Garnet/Polymer Composite Thin-Film Electrolyte with Domain-Limited Ion Transport Pathways","authors":"Chao Wang, Wenxin Li, Dabing Li, Xiaoxue Zhao, Yang Li, Yanling Zhang, Xiang Qi, Meng Wu, Li-Zhen Fan","doi":"10.1021/acsnano.4c11205","DOIUrl":null,"url":null,"abstract":"The integrated approach of interfacial engineering and composite electrolytes is crucial for the market application of Li metal batteries (LMBs). A 22 μm thin-film type polymer/Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) composite solid-state electrolyte (LPCE) was designed that combines fast ion conduction and stable interfacial evolution, enhancing lithium metal interface stability and cycling performance. The ether-based molecular coordination groups/clusters formed by triethylene glycol dimethyl ether (TGDE) and anions facilitated the movement of Li<sup>+</sup> between the polymer chain segments. These specific coordination clusters significantly “constrained” the interaction between anions and Li<sup>+</sup>, inducing the anions to follow the clusters to the Li metal and preferentially participate in solid electrolyte interface (SEI) derivatization. The inorganic salt-rich gradient SEI modulates Li<sup>+</sup> deposition and inhibits uncontrolled dendrite growth, achieving stable cycling of Li symmetric cell at 0.2 mA cm<sup>–2</sup> for over 2000 h. Furthermore, the Li||NCM811 cell at a rate of 0.1 C exhibits an initial discharge capacity of 194.5 mAh g<sup>–1</sup>, maintaining a capacity retention rate of over 90% after 500 cycles. This work demonstrates the importance of domain-limited ion clusters in ion transport and interfacial evolution, providing a perspective for solid-state LMBs.","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11205","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integrated approach of interfacial engineering and composite electrolytes is crucial for the market application of Li metal batteries (LMBs). A 22 μm thin-film type polymer/Li6.4La3Zr1.4Ta0.6O12 (LLZTO) composite solid-state electrolyte (LPCE) was designed that combines fast ion conduction and stable interfacial evolution, enhancing lithium metal interface stability and cycling performance. The ether-based molecular coordination groups/clusters formed by triethylene glycol dimethyl ether (TGDE) and anions facilitated the movement of Li+ between the polymer chain segments. These specific coordination clusters significantly “constrained” the interaction between anions and Li+, inducing the anions to follow the clusters to the Li metal and preferentially participate in solid electrolyte interface (SEI) derivatization. The inorganic salt-rich gradient SEI modulates Li+ deposition and inhibits uncontrolled dendrite growth, achieving stable cycling of Li symmetric cell at 0.2 mA cm–2 for over 2000 h. Furthermore, the Li||NCM811 cell at a rate of 0.1 C exhibits an initial discharge capacity of 194.5 mAh g–1, maintaining a capacity retention rate of over 90% after 500 cycles. This work demonstrates the importance of domain-limited ion clusters in ion transport and interfacial evolution, providing a perspective for solid-state LMBs.

Abstract Image

具有限域离子传输途径的石榴石/聚合物复合薄膜电解质的高性能固态锂金属电池
界面工程和复合电解质的综合方法对于锂金属电池(LMB)的市场应用至关重要。本研究设计了一种 22 μm 薄膜型聚合物/Li6.4La3Zr1.4Ta0.6O12(LLZTO)复合固态电解质(LPCE),该电解质兼具快速离子传导和稳定的界面演化特性,可提高锂金属界面的稳定性和循环性能。由三乙二醇二甲醚(TGDE)和阴离子形成的醚基分子配位基团/簇促进了 Li+ 在聚合物链段之间的移动。这些特定的配位簇极大地 "限制 "了阴离子与 Li+ 之间的相互作用,促使阴离子跟随配位簇到达金属锂处,优先参与固态电解质界面(SEI)衍生。富含无机盐的梯度 SEI 调节了 Li+ 的沉积,抑制了枝晶的失控生长,使锂离子对称电池在 0.2 mA cm-2 的条件下稳定循环超过 2000 小时。这项工作证明了限域离子群在离子传输和界面演化中的重要性,为固态 LMB 提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信