{"title":"Lensless On-Chip Chemiluminescence Imaging for High-Throughput Single-Cell Heterogeneity Analysis","authors":"Dehong Yang, Ying Fang, Xiaoyin Liu, Jinbiao Ma, Jiahao Xu, Hao Dong, Haiying Ding, Di Wang, Qingjun Liu, Fenni Zhang","doi":"10.1021/acs.nanolett.4c04487","DOIUrl":null,"url":null,"abstract":"High-throughput single-cell heterogeneity imaging and analysis is essential for understanding complex biological systems and for advancing personalized precision disease diagnosis and treatment. Here, we present a miniaturized lensless chemiluminescence chip for high-throughput single-cell functional imaging with subcellular resolution. With the sensitive chemiluminescence sensing and wide field of view of contact lensless imaging, we demonstrated the chemiluminescent imaging of over 1000 single cells, and their membrane glycoprotein and the high-throughput single-cell heterogeneity of membrane protein imaging were examined for precision analysis. Furthermore, the functional adhesion and heterogeneity of single live cells were imaged and explored. This miniaturized lensless on-chip CL-CMOS imaging platform enables high-throughput single-cell imaging and analysis with high sensitivity and subcellular resolution, providing new techniques for the cellular study of biological heterogeneity and has potential application in precision disease diagnosis and treatment at the point-of-care settings.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04487","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-throughput single-cell heterogeneity imaging and analysis is essential for understanding complex biological systems and for advancing personalized precision disease diagnosis and treatment. Here, we present a miniaturized lensless chemiluminescence chip for high-throughput single-cell functional imaging with subcellular resolution. With the sensitive chemiluminescence sensing and wide field of view of contact lensless imaging, we demonstrated the chemiluminescent imaging of over 1000 single cells, and their membrane glycoprotein and the high-throughput single-cell heterogeneity of membrane protein imaging were examined for precision analysis. Furthermore, the functional adhesion and heterogeneity of single live cells were imaged and explored. This miniaturized lensless on-chip CL-CMOS imaging platform enables high-throughput single-cell imaging and analysis with high sensitivity and subcellular resolution, providing new techniques for the cellular study of biological heterogeneity and has potential application in precision disease diagnosis and treatment at the point-of-care settings.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.