{"title":"The Throttle Effect in Metal–Organic Frameworks for Distinguishing Water Isotopes","authors":"Xiao Xiao, Guangyu He, Junbao Ma, Xuejun Cheng, Ruoxu Wang, Hongyu Chen","doi":"10.1021/acs.nanolett.4c03881","DOIUrl":null,"url":null,"abstract":"Metal–organic frameworks (MOFs) have been widely used for separation, but amplifying subtle differences between similar molecules to achieve effective separation remains a great challenge. In this study, we utilize the fluorescent molecule uranine (Ura) to modulate the pores of zeolitic-imidazolate framework 8 (ZIF8), creating an unusual throttle effect. By monitoring fluorescence intensity changes in Ura, the transport diffusion process could be quantified to reveal the diffusion constant of solvents. When we pushed the Ura occupancy to its limit (from 59% to 76% and 98%), the diffusion rate decreases by 2 orders of magnitude. Most importantly, there is a significant dissymmetry between the two-way exchange rates of solvents, and the rates of H<sub>2</sub>O and D<sub>2</sub>O became distinguishable. Such unusual throttle effects disappear at low Ura occupancy of 59% and 76%. We believe that the throttle effect with small-molecule loading could provide a universal design principle for MOF-based applications, especially for isotope separation.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03881","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal–organic frameworks (MOFs) have been widely used for separation, but amplifying subtle differences between similar molecules to achieve effective separation remains a great challenge. In this study, we utilize the fluorescent molecule uranine (Ura) to modulate the pores of zeolitic-imidazolate framework 8 (ZIF8), creating an unusual throttle effect. By monitoring fluorescence intensity changes in Ura, the transport diffusion process could be quantified to reveal the diffusion constant of solvents. When we pushed the Ura occupancy to its limit (from 59% to 76% and 98%), the diffusion rate decreases by 2 orders of magnitude. Most importantly, there is a significant dissymmetry between the two-way exchange rates of solvents, and the rates of H2O and D2O became distinguishable. Such unusual throttle effects disappear at low Ura occupancy of 59% and 76%. We believe that the throttle effect with small-molecule loading could provide a universal design principle for MOF-based applications, especially for isotope separation.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.