“Anchoring Capture” Effect Mimicking Proline in Hardy Deep‐Sea Fish to Stabilize the Zinc Anode with Lower Operating Temperature

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Feng Zhu, Dongxu Wang, Yupeng Dang, Ping Wang, Pengcheng Xu, Dandan Han, Yen Wei
{"title":"“Anchoring Capture” Effect Mimicking Proline in Hardy Deep‐Sea Fish to Stabilize the Zinc Anode with Lower Operating Temperature","authors":"Feng Zhu, Dongxu Wang, Yupeng Dang, Ping Wang, Pengcheng Xu, Dandan Han, Yen Wei","doi":"10.1002/smll.202407767","DOIUrl":null,"url":null,"abstract":"The low plating/stripping efficiency of zinc anodes, dendrite growth, and high freezing points of aqueous solutions hinder the practical application of aqueous zinc‐ion batteries. This paper proposes a zwitterionic permeable network solid‐state electrolyte based on the “anchor‐capture” effect to address these problems by incorporating proline (Pro, a biological antifreeze agent) into the electrolyte. Extensive validation tests, Quantum Chemistry (QC) calculations, Molecular Dynamics (MD) Simulations, and ab initio molecular dynamics simulations consistently indicate that the amino groups in proline adsorb onto the Zn metal surface, stabilizing the zinc anode‐electrolyte interface, suppressing side reactions from water decomposition, and homogenizing zinc‐ion flux. This electrolyte demonstrates excellent reversibility in Zn‐Mn<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> cells and Zn‐Zn half‐cells, achieving a high coulombic efficiency of over 99.4% across 2000 cycles in Zn‐Mn<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> full cells, and delivering a discharge‐specific capacity of 175.2 mAh g<jats:sup>−1</jats:sup> at −35 °C and 1 A g<jats:sup>−1</jats:sup>. Additionally, an appropriate concentration of proline lowers the electrolyte's freezing point to −45 °C through the network's solid‐state effect, ensuring the stable operation of the solid‐state battery at −35 °C. This innovative concept of network solid‐state electrolytes injects new vitality into the development of multifunctional solid‐state electrolytes.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407767","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The low plating/stripping efficiency of zinc anodes, dendrite growth, and high freezing points of aqueous solutions hinder the practical application of aqueous zinc‐ion batteries. This paper proposes a zwitterionic permeable network solid‐state electrolyte based on the “anchor‐capture” effect to address these problems by incorporating proline (Pro, a biological antifreeze agent) into the electrolyte. Extensive validation tests, Quantum Chemistry (QC) calculations, Molecular Dynamics (MD) Simulations, and ab initio molecular dynamics simulations consistently indicate that the amino groups in proline adsorb onto the Zn metal surface, stabilizing the zinc anode‐electrolyte interface, suppressing side reactions from water decomposition, and homogenizing zinc‐ion flux. This electrolyte demonstrates excellent reversibility in Zn‐Mn2O3 cells and Zn‐Zn half‐cells, achieving a high coulombic efficiency of over 99.4% across 2000 cycles in Zn‐Mn2O3 full cells, and delivering a discharge‐specific capacity of 175.2 mAh g−1 at −35 °C and 1 A g−1. Additionally, an appropriate concentration of proline lowers the electrolyte's freezing point to −45 °C through the network's solid‐state effect, ensuring the stable operation of the solid‐state battery at −35 °C. This innovative concept of network solid‐state electrolytes injects new vitality into the development of multifunctional solid‐state electrolytes.

Abstract Image

模仿深海鱼脯氨酸的 "锚定捕获 "效应,在较低工作温度下稳定锌阳极
锌阳极的电镀/剥离效率低、枝晶生长以及水溶液的高凝固点阻碍了锌离子水溶液电池的实际应用。本文提出了一种基于 "锚捕获 "效应的齐聚物渗透网络固态电解质,通过在电解质中加入脯氨酸(Pro,一种生物防冻剂)来解决这些问题。广泛的验证测试、量子化学(QC)计算、分子动力学(MD)模拟和 ab initio 分子动力学模拟一致表明,脯氨酸中的氨基会吸附到锌金属表面,从而稳定锌阳极-电解质界面,抑制水分解产生的副反应,并均匀锌离子通量。这种电解液在 Zn-Mn2O3 电池和 Zn-Zn 半电池中表现出卓越的可逆性,在 Zn-Mn2O3 全电池的 2000 次循环中实现了超过 99.4% 的高库仑效率,在 -35 °C 和 1 A g-1 条件下可提供 175.2 mAh g-1 的放电特定容量。此外,适当浓度的脯氨酸还能通过网络固态效应将电解液的冰点降至-45 °C,确保固态电池在-35 °C下稳定运行。这种网络固态电解质的创新概念为多功能固态电解质的开发注入了新的活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信