Sergěj Y.M.H. Seepma , Janou A. Koskamp , Michel G. Colin , Eleftheria Chiou , Rubayat Sobhan , Tim F.J. Bögels , Tom Bastiaan , Hadi Zamanian , Eric T. Baars , Peter J. de Moel , Mariëtte Wolthers , Onno J.I. Kramer
{"title":"Mechanistic model advancements for optimal calcium removal in water treatment: Integral operation improvements and reactor design strategies","authors":"Sergěj Y.M.H. Seepma , Janou A. Koskamp , Michel G. Colin , Eleftheria Chiou , Rubayat Sobhan , Tim F.J. Bögels , Tom Bastiaan , Hadi Zamanian , Eric T. Baars , Peter J. de Moel , Mariëtte Wolthers , Onno J.I. Kramer","doi":"10.1016/j.watres.2024.122781","DOIUrl":null,"url":null,"abstract":"<div><div>Drinking water softening has primarily prioritized public health, environmental benefits, social costs and enhanced client comfort. Annually, over 35 billion cubic meters of water is softened worldwide, often utilizing three main techniques: nanofiltration, ion exchange and seeded crystallization by pellet softening. However, recent modifications in pellet softening, including changes in seeding materials and acid conditioning used post-softening, have not fully achieved desired flexibility and optimization. This highlights the need of an integral approach, as drinking water softening is just one step in the drinking water treatment chain, which includes ozonation, softening, biological active carbon filtration (BACF) and sand filtration among others. In addition, pellet softening is often practiced based on operator knowledge, lacking practical key reactor performance indicators (KPIs) for efficient control. For that reason, we propose a newly and improved integral mechanistic model designed to accurately predict (1) calcite removal rates in drinking water through seeded crystallization in pellet softening reactors, (2) the saturation of the filter bed in the subsequent treatment step, (3) values for the KPIs steering the softening efficiency. Our new mechanistic model integrates insights from hydrodynamics, thermodynamics, mass transfer kinetics, nucleation and reactor engineering, focussing on critical variables such as temperature, linear velocity, pellet particle size and saturation index with respect to calcite. Our model was validated with data from the Waternet Weesperkarspel drinking water treatment plant in Amsterdam, The Netherlands, but implies universal applicability for addressing industrial challenges beyond drinking water softening. The implementation of our model proposes five effective KPIs to optimize the softening process, chemical usage, and reactor design. The advantage of this model is that it eliminates the application of numerical methods and fills a significant gap in the field by providing predictions of the carry-over (i.e., the produced CaCO<sub>3</sub> fines leaving the fluidized bed) from water softening practices. With our model, the calcium removal rate is predicted with an average standard deviation (SD) of 40 % and the consequential clogging prediction of the BACF bed with an average SD of 130 %. Ultimately, our model provides crucial insights for operational management and decision-making in drinking water treatment plants, steering towards a more circular and environmentally sustainable process.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122781"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016804","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drinking water softening has primarily prioritized public health, environmental benefits, social costs and enhanced client comfort. Annually, over 35 billion cubic meters of water is softened worldwide, often utilizing three main techniques: nanofiltration, ion exchange and seeded crystallization by pellet softening. However, recent modifications in pellet softening, including changes in seeding materials and acid conditioning used post-softening, have not fully achieved desired flexibility and optimization. This highlights the need of an integral approach, as drinking water softening is just one step in the drinking water treatment chain, which includes ozonation, softening, biological active carbon filtration (BACF) and sand filtration among others. In addition, pellet softening is often practiced based on operator knowledge, lacking practical key reactor performance indicators (KPIs) for efficient control. For that reason, we propose a newly and improved integral mechanistic model designed to accurately predict (1) calcite removal rates in drinking water through seeded crystallization in pellet softening reactors, (2) the saturation of the filter bed in the subsequent treatment step, (3) values for the KPIs steering the softening efficiency. Our new mechanistic model integrates insights from hydrodynamics, thermodynamics, mass transfer kinetics, nucleation and reactor engineering, focussing on critical variables such as temperature, linear velocity, pellet particle size and saturation index with respect to calcite. Our model was validated with data from the Waternet Weesperkarspel drinking water treatment plant in Amsterdam, The Netherlands, but implies universal applicability for addressing industrial challenges beyond drinking water softening. The implementation of our model proposes five effective KPIs to optimize the softening process, chemical usage, and reactor design. The advantage of this model is that it eliminates the application of numerical methods and fills a significant gap in the field by providing predictions of the carry-over (i.e., the produced CaCO3 fines leaving the fluidized bed) from water softening practices. With our model, the calcium removal rate is predicted with an average standard deviation (SD) of 40 % and the consequential clogging prediction of the BACF bed with an average SD of 130 %. Ultimately, our model provides crucial insights for operational management and decision-making in drinking water treatment plants, steering towards a more circular and environmentally sustainable process.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.