{"title":"Diabetes and obesity: leveraging heterogeneity for precision medicine","authors":"Paul W Franks, Jennifer L Sargent","doi":"10.1093/eurheartj/ehae746","DOIUrl":null,"url":null,"abstract":"The increasing prevalence of diabetes, obesity, and their cardiometabolic sequelae present major global health challenges and highlight shortfalls of current approaches to the prevention and treatment of these conditions. Representing the largest global burden of morbidity and mortality, the pathobiological processes underlying cardiometabolic diseases are in principle preventable and, even when disease is manifest, sometimes reversable. Nevertheless, with current clinical and public health strategies, goals of widespread prevention and remission remain largely aspirational. Application of precision medicine approaches that reduce errors and improve accuracy in medical and health recommendations has potential to accelerate progress towards these goals. Precision medicine must also maintain safety and ideally be cost-effective, as well as being compatible with an individual’s preferences, capabilities, and needs. Initial progress in precision medicine was made in the context of rare diseases, with much focus on pharmacogenetic studies, owing to the cause of these diseases often being attributable to highly penetrant single gene mutations. By contrast, most obesity and type 2 diabetes are heterogeneous in aetiology and clinical presentation, underpinned by complex interactions between genetic and non-genetic factors. The heterogeneity of these conditions can be leveraged for development of approaches for precision therapies. Adequate characterization of the heterogeneity in cardiometabolic disease necessitates diversity of and synthesis across data types and research methods, ideally culminating in precision trials and real-world application of precision medicine approaches. This State-of-the-Art Review provides an overview of the current state of the science of precision medicine, as well as outlining a roadmap for study designs that maximise opportunities and address challenges to clinical implementation of precision medicine approaches in obesity and diabetes.","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"70 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurheartj/ehae746","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of diabetes, obesity, and their cardiometabolic sequelae present major global health challenges and highlight shortfalls of current approaches to the prevention and treatment of these conditions. Representing the largest global burden of morbidity and mortality, the pathobiological processes underlying cardiometabolic diseases are in principle preventable and, even when disease is manifest, sometimes reversable. Nevertheless, with current clinical and public health strategies, goals of widespread prevention and remission remain largely aspirational. Application of precision medicine approaches that reduce errors and improve accuracy in medical and health recommendations has potential to accelerate progress towards these goals. Precision medicine must also maintain safety and ideally be cost-effective, as well as being compatible with an individual’s preferences, capabilities, and needs. Initial progress in precision medicine was made in the context of rare diseases, with much focus on pharmacogenetic studies, owing to the cause of these diseases often being attributable to highly penetrant single gene mutations. By contrast, most obesity and type 2 diabetes are heterogeneous in aetiology and clinical presentation, underpinned by complex interactions between genetic and non-genetic factors. The heterogeneity of these conditions can be leveraged for development of approaches for precision therapies. Adequate characterization of the heterogeneity in cardiometabolic disease necessitates diversity of and synthesis across data types and research methods, ideally culminating in precision trials and real-world application of precision medicine approaches. This State-of-the-Art Review provides an overview of the current state of the science of precision medicine, as well as outlining a roadmap for study designs that maximise opportunities and address challenges to clinical implementation of precision medicine approaches in obesity and diabetes.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.