Giant tunnel electroresistance through a Van der Waals junction by external ferroelectric polarization

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Guangdi Feng, Yifei Liu, Qiuxiang Zhu, Zhenyu Feng, Shengwen Luo, Cuijie Qin, Luqiu Chen, Yu Xu, Haonan Wang, Muhammad Zubair, Ke Qu, Chang Yang, Shenglan Hao, Fangyu Yue, Chungang Duan, Junhao Chu, Bobo Tian
{"title":"Giant tunnel electroresistance through a Van der Waals junction by external ferroelectric polarization","authors":"Guangdi Feng, Yifei Liu, Qiuxiang Zhu, Zhenyu Feng, Shengwen Luo, Cuijie Qin, Luqiu Chen, Yu Xu, Haonan Wang, Muhammad Zubair, Ke Qu, Chang Yang, Shenglan Hao, Fangyu Yue, Chungang Duan, Junhao Chu, Bobo Tian","doi":"10.1038/s41467-024-54114-3","DOIUrl":null,"url":null,"abstract":"<p>The burgeoning interest in two-dimensional semiconductors stems from their potential as ultrathin platforms for next-generation transistors. Nonetheless, there persist formidable challenges in fully obtaining high-performance complementary logic components and the underlying mechanisms for the polarity modulation of transistors are not yet fully understood. Here, we exploit both ferroelectric domain-based nonvolatile modulation of Fermi level in transitional metal dichalcogenides (MoS<sub>2</sub>) and quantum tunneling through nanoscale hexagonal boron nitride (h-BN). Our prototype devices, termed as vertical tunneling ferroelectric field-effect transistor, utilizes a Van der Waals MoS<sub>2</sub>/h-BN/metal tunnel junction as the channel. The Fermi level of MoS<sub>2</sub> is bipolarly tuned by ferroelectric domains and sensitively detected by the direct quantum tunneling strength across the junction, demonstrating an impressive electroresistance ratio of up to 10<sup>9</sup> in the vertical tunneling ferroelectric field-effect transistor. It consumes only 0.16 fJ of energy to open a ratio window exceeding 10<sup>4</sup>. This work not only validates the effectiveness of tailored tunnel barriers in manipulating electronic flow but also highlights a new avenue for the design flexibility and functional versatility of advanced ferroelectric memory technology.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54114-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The burgeoning interest in two-dimensional semiconductors stems from their potential as ultrathin platforms for next-generation transistors. Nonetheless, there persist formidable challenges in fully obtaining high-performance complementary logic components and the underlying mechanisms for the polarity modulation of transistors are not yet fully understood. Here, we exploit both ferroelectric domain-based nonvolatile modulation of Fermi level in transitional metal dichalcogenides (MoS2) and quantum tunneling through nanoscale hexagonal boron nitride (h-BN). Our prototype devices, termed as vertical tunneling ferroelectric field-effect transistor, utilizes a Van der Waals MoS2/h-BN/metal tunnel junction as the channel. The Fermi level of MoS2 is bipolarly tuned by ferroelectric domains and sensitively detected by the direct quantum tunneling strength across the junction, demonstrating an impressive electroresistance ratio of up to 109 in the vertical tunneling ferroelectric field-effect transistor. It consumes only 0.16 fJ of energy to open a ratio window exceeding 104. This work not only validates the effectiveness of tailored tunnel barriers in manipulating electronic flow but also highlights a new avenue for the design flexibility and functional versatility of advanced ferroelectric memory technology.

Abstract Image

外部铁电极化通过范德华结的巨型隧道电阻
二维半导体作为下一代晶体管的超薄平台潜力巨大,因而备受关注。然而,要完全获得高性能互补逻辑元件仍面临巨大挑战,而且人们对晶体管极性调制的基本机制尚未完全了解。在这里,我们利用了基于铁电畴的过渡金属二钙化物(MoS2)费米级非易失性调制和通过纳米级六方氮化硼(h-BN)的量子隧道。我们的原型器件被称为垂直隧道铁电场效应晶体管,利用范德华 MoS2/h-BN/金属隧道结作为通道。MoS2 的费米级通过铁电畴进行双极性调整,并通过直接量子隧穿强度灵敏地检测整个结,从而在垂直隧穿铁电场效应晶体管中实现了高达 109 的惊人电阻比。打开超过 104 的比率窗口仅消耗 0.16 fJ 的能量。这项工作不仅验证了定制隧道势垒在操纵电子流方面的有效性,还为先进铁电存储器技术的设计灵活性和功能多样性开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信