Gold(I)-Catalyzed Regioselective Cycloisomerization of Bis(indol-3-yl)-ynamides to Access Five-membered Ring Linked Bisindole Derivatives

IF 4.4 2区 化学 Q2 CHEMISTRY, APPLIED
Zhan-Shuai Xiao, Yin Wei, Min Shi
{"title":"Gold(I)-Catalyzed Regioselective Cycloisomerization of Bis(indol-3-yl)-ynamides to Access Five-membered Ring Linked Bisindole Derivatives","authors":"Zhan-Shuai Xiao, Yin Wei, Min Shi","doi":"10.1002/adsc.202401052","DOIUrl":null,"url":null,"abstract":"A gold(I)-catalyzed regioselective cycloisomerization of bis(indol-3-yl)-ynamides for the rapid construction of five-membered ring linked bisindole derivatives has been reported, affording the desired products in the range of 72% - 94% yields under mild conditions along with broad substrate scope. Moreover, DFT calculation of the NBO (natural bond orbital) charge supports the origin of its regioselectivity.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"70 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401052","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A gold(I)-catalyzed regioselective cycloisomerization of bis(indol-3-yl)-ynamides for the rapid construction of five-membered ring linked bisindole derivatives has been reported, affording the desired products in the range of 72% - 94% yields under mild conditions along with broad substrate scope. Moreover, DFT calculation of the NBO (natural bond orbital) charge supports the origin of its regioselectivity.
金(I)催化双(吲哚-3-基)炔酰胺的区域选择性环异构化以获得五元环连接的双吲哚衍生物
该研究报道了一种由金(I)催化的双(吲哚-3-基)炔酰胺的区域选择性环异构化反应,用于快速构建五元环连接的双吲哚衍生物。此外,对 NBO(天然键轨道)电荷的 DFT 计算也证明了其区域选择性的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Synthesis & Catalysis
Advanced Synthesis & Catalysis 化学-应用化学
CiteScore
9.40
自引率
7.40%
发文量
447
审稿时长
1.8 months
期刊介绍: Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry. The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信