{"title":"PCTFE Microporous Membrane with High Corrosion-resistance and Ultra-fast Oil/water Separation Performances","authors":"Lu He, Jingxian Qin, Wanli Zhang, Weiwei Zhu, Jiang Li, Shaoyun Guo, Jiabin Shen","doi":"10.1016/j.polymer.2024.127789","DOIUrl":null,"url":null,"abstract":"Membrane separation technology is a promising choice for treating oily water from industrial and domestic sewage. The elaborate design of pore structure can realize a good trade-off between separation flux and efficiency, thus taking the full advantages of membrane separation. Herein, polychlorotrifluoroethylene (PCTFE) microporous membrane with tunable pore structure was fabricated via a sacrificial template method. Fluoroelastomer (FR), serving as sacrificial template, was incorporated into PCTFE via a solvent-assisted method, forming PCTFE/FR blending films. After removing FR via solvent-dissolving, porous PCTFE membrane was obtained. More important, the gradual increment of FR loading made the morphology of PCTFE/FR blending films realize the transformation from “sea-island” to bicontinuous structure, thus endowing the membranes with tunable pore structure, surface wettability, as well as mechanical properties. Among the candidates, 50FR membranes possessed good flexibility, twist-resistance, as well as excellent creep-resistance and can efficiently separate oil from various water/oil mixtures. The oil (dichloromethane) permeability, separation efficiency, and filtrated oil purity were high up ∼10000 L/(m<sup>2</sup>⋅h), ∼99%, and ∼99.92 wt%, respectively. Additionally, although undergoing 25 separation cycles or being immersed into various highly-corrosive liquid (including 1M HCl, 1M NaOH, DMF, ethanediamine, and concentrated HNO<sub>3</sub>) for 7 days, the properties of the membrane changed little. These features suggested a great potential for preparing PCTFE membranes used for oil/water separation in various harsh environment.","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127789","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane separation technology is a promising choice for treating oily water from industrial and domestic sewage. The elaborate design of pore structure can realize a good trade-off between separation flux and efficiency, thus taking the full advantages of membrane separation. Herein, polychlorotrifluoroethylene (PCTFE) microporous membrane with tunable pore structure was fabricated via a sacrificial template method. Fluoroelastomer (FR), serving as sacrificial template, was incorporated into PCTFE via a solvent-assisted method, forming PCTFE/FR blending films. After removing FR via solvent-dissolving, porous PCTFE membrane was obtained. More important, the gradual increment of FR loading made the morphology of PCTFE/FR blending films realize the transformation from “sea-island” to bicontinuous structure, thus endowing the membranes with tunable pore structure, surface wettability, as well as mechanical properties. Among the candidates, 50FR membranes possessed good flexibility, twist-resistance, as well as excellent creep-resistance and can efficiently separate oil from various water/oil mixtures. The oil (dichloromethane) permeability, separation efficiency, and filtrated oil purity were high up ∼10000 L/(m2⋅h), ∼99%, and ∼99.92 wt%, respectively. Additionally, although undergoing 25 separation cycles or being immersed into various highly-corrosive liquid (including 1M HCl, 1M NaOH, DMF, ethanediamine, and concentrated HNO3) for 7 days, the properties of the membrane changed little. These features suggested a great potential for preparing PCTFE membranes used for oil/water separation in various harsh environment.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.