Convergence of the hydrodynamic gradient expansion in relativistic kinetic theory

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
L. Gavassino
{"title":"Convergence of the hydrodynamic gradient expansion in relativistic kinetic theory","authors":"L. Gavassino","doi":"10.1103/physrevd.110.094012","DOIUrl":null,"url":null,"abstract":"We rigorously prove that, in any relativistic kinetic theory whose nonhydrodynamic sector has a finite gap, the Taylor series of all hydrodynamic dispersion relations has a finite radius of convergence. Furthermore, we prove that, for shear waves, such radius of convergence cannot be smaller than <mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"division\" data-semantic-speech=\"1 divided by 2\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container> times the gap size. Finally, we prove that the nonhydrodynamic sector is gapped whenever the total scattering cross section (expressed as a function of the energy) is bounded below by a positive nonzero constant. These results, combined with well-established covariant stability criteria, allow us to derive a rigorous upper bound on the shear viscosity of relativistic dilute gases.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"18 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.094012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We rigorously prove that, in any relativistic kinetic theory whose nonhydrodynamic sector has a finite gap, the Taylor series of all hydrodynamic dispersion relations has a finite radius of convergence. Furthermore, we prove that, for shear waves, such radius of convergence cannot be smaller than 1/2 times the gap size. Finally, we prove that the nonhydrodynamic sector is gapped whenever the total scattering cross section (expressed as a function of the energy) is bounded below by a positive nonzero constant. These results, combined with well-established covariant stability criteria, allow us to derive a rigorous upper bound on the shear viscosity of relativistic dilute gases.
相对论动力学理论中流体动力梯度扩展的收敛性
我们严格证明,在任何相对论动理论中,如果其非流体力学部分具有有限的间隙,那么所有流体力学频散关系的泰勒级数具有有限的收敛半径。此外,我们还证明,对于剪切波,这种收敛半径不可能小于间隙大小的 1/2 倍。最后,我们证明,只要总散射截面(表示为能量的函数)下面有一个正的非零常数,非流体动力部门就是间隙的。这些结果与完善的协变稳定性准则相结合,使我们能够推导出相对论稀薄气体剪切粘度的严格上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信