Novel first-order phase transition and critical points in SU(3) Yang-Mills theory with spatial compactification

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Daisuke Fujii, Akihiro Iwanaka, Masakiyo Kitazawa, Daiki Suenaga
{"title":"Novel first-order phase transition and critical points in SU(3) Yang-Mills theory with spatial compactification","authors":"Daisuke Fujii, Akihiro Iwanaka, Masakiyo Kitazawa, Daiki Suenaga","doi":"10.1103/physrevd.110.094016","DOIUrl":null,"url":null,"abstract":"We investigate the thermodynamics and phase structure of <mjx-container ctxtmenu_counter=\"60\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"0 8 7\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper U left parenthesis 3 right parenthesis\" data-semantic-structure=\"(9 0 8 (7 1 6 (5 2 3 4)))\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1,5\" data-semantic-content=\"6,1\" data-semantic- data-semantic-owns=\"1 6 5\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"7\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> Yang-Mills theory on <mjx-container ctxtmenu_counter=\"61\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"multiplication\" data-semantic-speech=\"double struck upper T squared times double struck upper R squared\" data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝕋</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℝ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> in Euclidean spacetime in an effective-model approach. The model incorporates two Polyakov loops along two compactified directions as dynamical variables, and is constructed to reproduce thermodynamics on <mjx-container ctxtmenu_counter=\"62\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"multiplication\" data-semantic-speech=\"double struck upper T squared times double struck upper R squared\" data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝕋</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℝ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> measured on the lattice. The model analysis indicates the existence of a novel first-order phase transition on <mjx-container ctxtmenu_counter=\"63\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"multiplication\" data-semantic-speech=\"double struck upper T squared times double struck upper R squared\" data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝕋</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℝ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> in the deconfined phase, which terminates at critical points that should belong to the two-dimensional <mjx-container ctxtmenu_counter=\"64\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑍</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.033em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> universality class. We argue that the interplay of the Polyakov loops induced by their cross-term in the Polyakov-loop potential is responsible for the manifestation of the first-order transition.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"8 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.094016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the thermodynamics and phase structure of 𝑆𝑈(3) Yang-Mills theory on 𝕋2×2 in Euclidean spacetime in an effective-model approach. The model incorporates two Polyakov loops along two compactified directions as dynamical variables, and is constructed to reproduce thermodynamics on 𝕋2×2 measured on the lattice. The model analysis indicates the existence of a novel first-order phase transition on 𝕋2×2 in the deconfined phase, which terminates at critical points that should belong to the two-dimensional 𝑍2 universality class. We argue that the interplay of the Polyakov loops induced by their cross-term in the Polyakov-loop potential is responsible for the manifestation of the first-order transition.
具有空间紧凑性的 SU(3) 杨-米尔斯理论中的新型一阶相变和临界点
我们用有效模型方法研究了欧几里得时空中𝕋2×ℝ2 上𝑆𝑈(3) 杨-米尔斯理论的热力学和相结构。该模型将沿两个紧凑方向的两个波利亚科夫环作为动力学变量,其构造再现了在晶格上测量的𝕋2×ℝ2 上的热力学。模型分析表明,在𝕋2×ℝ2上存在一种新的一阶相变,即去约束相,它终止于临界点,而临界点应属于二维𝑍2普遍性类别。我们认为,波里雅科夫环势中的交叉项所诱导的波里雅科夫环的相互作用是一阶转变显现的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信