Charged critical behavior and nonperturbative continuum limit of three-dimensional latticeSU⁡(𝑁𝑐)gauge Higgs models

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Claudio Bonati, Andrea Pelissetto, Ivan Soler Calero, Ettore Vicari
{"title":"Charged critical behavior and nonperturbative continuum limit of three-dimensional latticeSU⁡(𝑁𝑐)gauge Higgs models","authors":"Claudio Bonati, Andrea Pelissetto, Ivan Soler Calero, Ettore Vicari","doi":"10.1103/physrevd.110.094504","DOIUrl":null,"url":null,"abstract":"We consider three-dimensional (3D) lattice <mjx-container ctxtmenu_counter=\"88\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(8 0 7 (6 1 (4 2 3) 5))\"><mjx-mrow data-semantic-children=\"0,6\" data-semantic-content=\"7,0\" data-semantic- data-semantic-owns=\"0 7 6\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper S upper U left parenthesis upper N Subscript c Baseline right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"1,5\" data-semantic- data-semantic-owns=\"1 4 5\" data-semantic-parent=\"8\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> gauge Higgs theories with multicomponent (<mjx-container ctxtmenu_counter=\"89\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-role=\"inequality\" data-semantic-speech=\"upper N Subscript f Baseline greater than 1\" data-semantic-structure=\"(5 (2 0 1) 3 4)\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,&gt;\" data-semantic-parent=\"5\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>&gt;</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>1</mjx-c></mjx-mn></mjx-math></mjx-container>) degenerate scalar fields and <mjx-container ctxtmenu_counter=\"90\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(8 0 7 (6 1 (4 2 3) 5))\"><mjx-mrow data-semantic-children=\"0,6\" data-semantic-content=\"7,0\" data-semantic- data-semantic-owns=\"0 7 6\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper U left parenthesis upper N Subscript f Baseline right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"1,5\" data-semantic- data-semantic-owns=\"1 4 5\" data-semantic-parent=\"8\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> global symmetry, focusing on systems with <mjx-container ctxtmenu_counter=\"91\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-role=\"equality\" data-semantic-speech=\"upper N Subscript c Baseline equals 2\" data-semantic-structure=\"(5 (2 0 1) 3 4)\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"5\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>, to identify critical behaviors that can be effectively described by the corresponding 3D <mjx-container ctxtmenu_counter=\"92\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(8 0 7 (6 1 (4 2 3) 5))\"><mjx-mrow data-semantic-children=\"0,6\" data-semantic-content=\"7,0\" data-semantic- data-semantic-owns=\"0 7 6\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper S upper U left parenthesis upper N Subscript c Baseline right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"1,5\" data-semantic- data-semantic-owns=\"1 4 5\" data-semantic-parent=\"8\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> gauge Higgs field theory. The field-theoretical analysis of the RG flow allows one to identify a stable charged fixed point for large values of <mjx-container ctxtmenu_counter=\"93\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript f\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>, that would control transitions characterized by the global symmetry-breaking pattern <mjx-container ctxtmenu_counter=\"94\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"29,30\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"29 6 30\" data-semantic-role=\"arrow\" data-semantic-speech=\"normal upper U left parenthesis upper N Subscript f Baseline right parenthesis right arrow upper S upper U left parenthesis 2 right parenthesis circled times normal upper U left parenthesis upper N Subscript f Baseline minus 2 right parenthesis\" data-semantic-structure=\"(31 (29 0 28 (20 1 (4 2 3) 5)) 6 (30 (27 7 26 (21 8 9 10)) 11 (25 12 24 (23 13 (22 (16 14 15) 17 18) 19))))\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,20\" data-semantic-content=\"28,0\" data-semantic- data-semantic-owns=\"0 28 20\" data-semantic-parent=\"31\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"29\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"29\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"1,5\" data-semantic- data-semantic-owns=\"1 4 5\" data-semantic-parent=\"29\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"20\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"20\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"20\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,→\" data-semantic-parent=\"31\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\"><mjx-c>→</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"27,25\" data-semantic-content=\"11\" data-semantic- data-semantic-owns=\"27 11 25\" data-semantic-parent=\"31\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"4\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"7,21\" data-semantic-content=\"26,7\" data-semantic- data-semantic-owns=\"7 26 21\" data-semantic-parent=\"30\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"27\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"27\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"9\" data-semantic-content=\"8,10\" data-semantic- data-semantic-owns=\"8 9 10\" data-semantic-parent=\"27\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"21\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"21\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,⊗\" data-semantic-parent=\"30\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⊗</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"12,23\" data-semantic-content=\"24,12\" data-semantic- data-semantic-owns=\"12 24 23\" data-semantic-parent=\"30\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\" inline-breaks=\"true\" space=\"3\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"25\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"25\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"22\" data-semantic-content=\"13,19\" data-semantic- data-semantic-owns=\"13 22 19\" data-semantic-parent=\"25\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\" inline-breaks=\"true\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"23\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"16,18\" data-semantic-content=\"17\" data-semantic- data-semantic-owns=\"16 17 18\" data-semantic-parent=\"23\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\" inline-breaks=\"true\"><mjx-msub data-semantic-children=\"14,15\" data-semantic- data-semantic-owns=\"14 15\" data-semantic-parent=\"22\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"22\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"22\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"23\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-math></mjx-container>. Continuous transitions with the same symmetry-breaking pattern are observed in the SU(2) lattice gauge model for <mjx-container ctxtmenu_counter=\"95\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-role=\"inequality\" data-semantic-speech=\"upper N Subscript f Baseline greater than or equals 30\" data-semantic-structure=\"(5 (2 0 1) 3 4)\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≥\" data-semantic-parent=\"5\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≥</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">3</mjx-c><mjx-c style=\"padding-top: 0.644em;\">0</mjx-c></mjx-mn></mjx-math></mjx-container>. Here we present a detailed finite-size scaling analysis of the Monte Carlo data for several large values of <mjx-container ctxtmenu_counter=\"96\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript f\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>. The results are in substantial agreement with the field-theoretical predictions obtained in the large-<mjx-container ctxtmenu_counter=\"97\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript f\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> limit. This provides evidence that the <mjx-container ctxtmenu_counter=\"98\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(8 0 7 (6 1 (4 2 3) 5))\"><mjx-mrow data-semantic-children=\"0,6\" data-semantic-content=\"7,0\" data-semantic- data-semantic-owns=\"0 7 6\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper S upper U left parenthesis upper N Subscript c Baseline right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"1,5\" data-semantic- data-semantic-owns=\"1 4 5\" data-semantic-parent=\"8\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> gauge Higgs field theories provide the correct effective description of the 3D large-<mjx-container ctxtmenu_counter=\"99\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript f\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> continuous transitions between the disordered and the Higgs phase, where the flavor symmetry breaks to <mjx-container ctxtmenu_counter=\"100\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"17,19\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"17 4 19\" data-semantic-role=\"multiplication\" data-semantic-speech=\"upper S upper U left parenthesis 2 right parenthesis circled times normal upper U left parenthesis upper N Subscript f Baseline minus 2 right parenthesis\" data-semantic-structure=\"(20 (17 0 16 (13 1 2 3)) 4 (19 5 18 (15 6 (14 (9 7 8) 10 11) 12)))\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,13\" data-semantic-content=\"16,0\" data-semantic- data-semantic-owns=\"0 16 13\" data-semantic-parent=\"20\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"17\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"17\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"17\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,⊗\" data-semantic-parent=\"20\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⊗</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,15\" data-semantic-content=\"18\" data-semantic- data-semantic-owns=\"5 18 15\" data-semantic-parent=\"20\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"3\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"19\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"14\" data-semantic-content=\"6,12\" data-semantic- data-semantic-owns=\"6 14 12\" data-semantic-parent=\"19\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\" inline-breaks=\"true\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"15\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"9,11\" data-semantic-content=\"10\" data-semantic- data-semantic-owns=\"9 10 11\" data-semantic-parent=\"15\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\" inline-breaks=\"true\"><mjx-msub data-semantic-children=\"7,8\" data-semantic- data-semantic-owns=\"7 8\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"14\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"15\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container>. Therefore, at least for large enough <mjx-container ctxtmenu_counter=\"101\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript f\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>, the 3D <mjx-container ctxtmenu_counter=\"102\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(8 0 7 (6 1 (4 2 3) 5))\"><mjx-mrow data-semantic-children=\"0,6\" data-semantic-content=\"7,0\" data-semantic- data-semantic-owns=\"0 7 6\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper S upper U left parenthesis upper N Subscript c Baseline right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"1,5\" data-semantic- data-semantic-owns=\"1 4 5\" data-semantic-parent=\"8\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.069em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> gauge Higgs field theories with multicomponent scalar fields can be nonperturbatively defined by the continuum limit of lattice discretized models with the same local and global symmetries.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"18 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.094504","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We consider three-dimensional (3D) lattice SU(𝑁𝑐) gauge Higgs theories with multicomponent (𝑁𝑓>1) degenerate scalar fields and 𝑈(𝑁𝑓) global symmetry, focusing on systems with 𝑁𝑐=2, to identify critical behaviors that can be effectively described by the corresponding 3D SU(𝑁𝑐) gauge Higgs field theory. The field-theoretical analysis of the RG flow allows one to identify a stable charged fixed point for large values of 𝑁𝑓, that would control transitions characterized by the global symmetry-breaking pattern U(𝑁𝑓)SU(2)U(𝑁𝑓2). Continuous transitions with the same symmetry-breaking pattern are observed in the SU(2) lattice gauge model for 𝑁𝑓30. Here we present a detailed finite-size scaling analysis of the Monte Carlo data for several large values of 𝑁𝑓. The results are in substantial agreement with the field-theoretical predictions obtained in the large-𝑁𝑓 limit. This provides evidence that the SU(𝑁𝑐) gauge Higgs field theories provide the correct effective description of the 3D large-𝑁𝑓 continuous transitions between the disordered and the Higgs phase, where the flavor symmetry breaks to SU(2)U(𝑁𝑓2). Therefore, at least for large enough 𝑁𝑓, the 3D SU(𝑁𝑐) gauge Higgs field theories with multicomponent scalar fields can be nonperturbatively defined by the continuum limit of lattice discretized models with the same local and global symmetries.
三维晶格SU(𝑁𝑐)规希格斯模型的带电临界行为和非微扰连续极限
我们考虑了具有多分量(𝑁𝑓>;1)退化标量场和𝑈(𝑁𝑓) 全局对称性的系统,重点研究𝑁𝑐=2 的系统,以确定相应的三维 SU(𝑁𝑐) 轨距希格斯场理论可以有效描述的临界行为。通过对 RG 流的场论分析,我们可以确定在𝑁𝑓 大值时的稳定带电固定点,它将控制以全局对称破缺模式 U(𝑁𝑓)→SU(2)⊗U(𝑁𝑓-2)为特征的转变。在𝑁𝑓≥30的SU(2) 格规模型中也观察到了具有相同对称性破缺模式的连续转换。在这里,我们针对几个较大的𝑁𝑓值,对蒙特卡洛数据进行了详细的有限规模缩放分析。结果与在大𝑁𝑓极限下获得的场论预测基本一致。这就证明,SU(𝑁𝑐)规希格斯场理论正确有效地描述了三维大𝑁𝑓无序相与希格斯相之间的连续转变,在这一转变中,味道对称性打破为SU(2)⊗U(𝑁𝑓-2)。因此,至少对于足够大的𝑁𝑓,具有多分量标量场的三维 SU(𝑁𝑐) 轨距希格斯场理论可以由具有相同局部和全局对称性的晶格离散模型的连续极限非扰动地定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信