Timelike meson form factors beyond the elastic region from lattice QCD

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Felipe G. Ortega-Gama, Jozef J. Dudek, Robert G. Edwards (for the Hadron Spectrum Collaboration)
{"title":"Timelike meson form factors beyond the elastic region from lattice QCD","authors":"Felipe G. Ortega-Gama, Jozef J. Dudek, Robert G. Edwards (for the Hadron Spectrum Collaboration)","doi":"10.1103/physrevd.110.094505","DOIUrl":null,"url":null,"abstract":"We present a calculation of the vector-isovector timelike form factors of the pion and the kaon using lattice quantum chromodynamics. We calculate two-point correlation functions with <mjx-container ctxtmenu_counter=\"74\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"8,5,6,7\" data-semantic-collapsed=\"(12 (c 9 10 11) 8 5 6 7)\" data-semantic- data-semantic-owns=\"8 5 6 7\" data-semantic-role=\"text\" data-semantic-speech=\"m Subscript pi Baseline tilde 280 upper M e upper V\" data-semantic-structure=\"(12 (8 (2 0 1) 3 4) 5 6 7)\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"12\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\" inline-breaks=\"true\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑚</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝜋</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>∼</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">2</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c style=\"padding-top: 0.647em;\">0</mjx-c></mjx-mn></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">M</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">e</mjx-c><mjx-c style=\"padding-top: 0.657em;\">V</mjx-c></mjx-mi></mjx-math></mjx-container>, extracting both the finite-volume spectrum and matrix elements for these states created from the vacuum by a vector current. After determining the coupled-channel <mjx-container ctxtmenu_counter=\"75\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"8,2,10\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"8 2 10\" data-semantic-role=\"sequence\" data-semantic-speech=\"pi pi comma upper K upper K overbar\" data-semantic-structure=\"(11 (8 0 7 1) 2 (10 3 9 (6 4 5)))\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"0 7 1\" data-semantic-parent=\"11\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"11\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"3,6\" data-semantic-content=\"9\" data-semantic- data-semantic-owns=\"3 9 6\" data-semantic-parent=\"11\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"2\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐾</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.45em; margin-bottom: -0.555em;\"><mjx-mo data-semantic-annotation=\"accent:bar\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.175em;\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐾</mjx-c></mjx-mi></mjx-base></mjx-mover></mjx-mrow></mjx-math></mjx-container> scattering amplitudes, we perform the necessary correction for the significant finite-volume effects present in the current matrix elements, leading to the timelike form factors. We find these to be dominated by the presence of the <mjx-container ctxtmenu_counter=\"76\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"rho\" data-semantic-type=\"identifier\"><mjx-c>𝜌</mjx-c></mjx-mi></mjx-math></mjx-container> resonance, and we extract its decay constant by an analytic continuation of the amplitudes to the resonance pole. In addition, the spacelike pion form factor is determined on the same lattice configurations, and a dispersive parametrization is used to simultaneously describe the spacelike and elastic timelike regions.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"25 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.094505","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We present a calculation of the vector-isovector timelike form factors of the pion and the kaon using lattice quantum chromodynamics. We calculate two-point correlation functions with 𝑚𝜋280MeV, extracting both the finite-volume spectrum and matrix elements for these states created from the vacuum by a vector current. After determining the coupled-channel 𝜋𝜋,𝐾¯𝐾 scattering amplitudes, we perform the necessary correction for the significant finite-volume effects present in the current matrix elements, leading to the timelike form factors. We find these to be dominated by the presence of the 𝜌 resonance, and we extract its decay constant by an analytic continuation of the amplitudes to the resonance pole. In addition, the spacelike pion form factor is determined on the same lattice configurations, and a dispersive parametrization is used to simultaneously describe the spacelike and elastic timelike regions.
从格子 QCD 看弹性区域之外的时态介子形式因子
我们利用格子量子色动力学计算了先驱和高昂子的矢量-异矢量时间形式因子。我们计算了𝑚𝜋∼280 MeV 的两点相关函数,为这些由矢量电流从真空中产生的态提取了有限体积谱和矩阵元素。我们发现𝜌共振的存在主导了这些形式因子,我们通过对振幅到共振极的解析延续来提取其衰变常数。此外,我们还在相同的晶格构型上确定了时空先驱形式因子,并使用分散参数同时描述了时空区域和弹性时空区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信