Unraveling PXP Many-Body Scars through Floquet Dynamics

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Giuliano Giudici, Federica Maria Surace, Hannes Pichler
{"title":"Unraveling PXP Many-Body Scars through Floquet Dynamics","authors":"Giuliano Giudici, Federica Maria Surace, Hannes Pichler","doi":"10.1103/physrevlett.133.190404","DOIUrl":null,"url":null,"abstract":"Quantum scars are special eigenstates of many-body systems that evade thermalization. They were first discovered in the PXP model, a well-known effective description of Rydberg atom arrays. Despite significant theoretical efforts, the fundamental origin of PXP scars remains elusive. By investigating the discretized dynamics of the PXP model as a function of the Trotter step <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c>𝜏</mjx-c></mjx-mi></mjx-math></mjx-container>, we uncover a remarkable correspondence between the zero- and two-particle eigenstates of the integrable Floquet-PXP cellular automaton at <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(6 0 1 (5 2 3 4))\"><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"tau equals pi divided by 2\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜏</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> and the PXP many-body scars of the time-continuous limit. Specifically, we demonstrate that PXP scars are adiabatically connected to the eigenstates of the <mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"tau equals pi divided by 2\" data-semantic-structure=\"(6 0 1 (5 2 3 4))\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜏</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> Floquet operator. Building on this result, we propose a protocol for achieving high-fidelity preparation of PXP scars in Rydberg atom experiments.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"9 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.190404","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum scars are special eigenstates of many-body systems that evade thermalization. They were first discovered in the PXP model, a well-known effective description of Rydberg atom arrays. Despite significant theoretical efforts, the fundamental origin of PXP scars remains elusive. By investigating the discretized dynamics of the PXP model as a function of the Trotter step 𝜏, we uncover a remarkable correspondence between the zero- and two-particle eigenstates of the integrable Floquet-PXP cellular automaton at 𝜏=𝜋/2 and the PXP many-body scars of the time-continuous limit. Specifically, we demonstrate that PXP scars are adiabatically connected to the eigenstates of the 𝜏=𝜋/2 Floquet operator. Building on this result, we propose a protocol for achieving high-fidelity preparation of PXP scars in Rydberg atom experiments.
通过 Floquet 动力学揭开 PXP 多体伤疤
量子痕是多体系统的特殊特征状态,可以避免热化。它们最早是在 PXP 模型中发现的,该模型是对雷德堡原子阵列的著名有效描述。尽管在理论上做出了巨大努力,但 PXP 量子痕的基本起源仍然难以捉摸。通过研究 PXP 模型的离散动力学作为 Trotter 步长 𝜏 的函数,我们发现了可积分 Floquet-PXP 蜂窝自动机在 𝜏=𝜋/2 时的零粒子和双粒子特征状态与时间连续极限的 PXP 多体疤痕之间的显著对应关系。具体来说,我们证明了 PXP 疤痕与𝜏=𝜋/2 Floquet 算子的特征状态绝热相连。在这一结果的基础上,我们提出了在雷德堡原子实验中实现高保真制备 PXP 疤痕的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信