Finding the optimal probe state for multiparameter quantum metrology using conic programming

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Masahito Hayashi, Yingkai Ouyang
{"title":"Finding the optimal probe state for multiparameter quantum metrology using conic programming","authors":"Masahito Hayashi, Yingkai Ouyang","doi":"10.1038/s41534-024-00905-x","DOIUrl":null,"url":null,"abstract":"<p>The ultimate precision in quantum sensing could be achieved using optimal quantum probe states. However, current quantum sensing protocols do not use probe states optimally. Indeed, the calculation of optimal probe states remains an outstanding challenge. Here, we present an algorithm that efficiently calculates a probe state for correlated and uncorrelated measurement strategies. The algorithm involves a conic program, which minimizes a linear objective function subject to conic constraints on a operator-valued variable. Our algorithm outputs a probe state that is a simple function of the optimal variable. We prove that our algorithm finds the optimal probe state for channel estimation problems, even in the multiparameter setting. For many noiseless quantum sensing problems, we prove the optimality of maximally entangled probe states. We also analyze the performance of 3D-field sensing using various probe states. Our work opens the door for a plethora of applications in quantum metrology.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"1 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00905-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The ultimate precision in quantum sensing could be achieved using optimal quantum probe states. However, current quantum sensing protocols do not use probe states optimally. Indeed, the calculation of optimal probe states remains an outstanding challenge. Here, we present an algorithm that efficiently calculates a probe state for correlated and uncorrelated measurement strategies. The algorithm involves a conic program, which minimizes a linear objective function subject to conic constraints on a operator-valued variable. Our algorithm outputs a probe state that is a simple function of the optimal variable. We prove that our algorithm finds the optimal probe state for channel estimation problems, even in the multiparameter setting. For many noiseless quantum sensing problems, we prove the optimality of maximally entangled probe states. We also analyze the performance of 3D-field sensing using various probe states. Our work opens the door for a plethora of applications in quantum metrology.

Abstract Image

利用圆锥编程寻找多参数量子计量学的最佳探测状态
使用最佳量子探测态可以实现量子传感的终极精度。然而,目前的量子传感协议并没有最佳地使用探测态。事实上,计算最优探测态仍然是一个突出的挑战。在这里,我们提出了一种算法,可以高效计算相关和非相关测量策略的探测状态。该算法涉及一个圆锥程序,该程序根据算子值变量的圆锥约束条件最小化线性目标函数。我们的算法输出的探测状态是最优变量的一个简单函数。我们证明,即使在多参数设置下,我们的算法也能为信道估计问题找到最优探测状态。对于许多无噪声量子传感问题,我们证明了最大纠缠探测状态的最优性。我们还分析了使用各种探测态的三维场传感性能。我们的工作为量子计量学的大量应用打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信