{"title":"Cation-induced topical disordered niobium nickel oxide for robust hydrogen storage in magnesium hydride","authors":"Shuai Li, Liuting Zhang, Fuying Wu, Qian Li","doi":"10.1016/j.jma.2024.10.011","DOIUrl":null,"url":null,"abstract":"Catalytic doping is one of the economic and efficient strategies to optimize the operating temperature and kinetic behavior of magnesium hydride (MgH<sub>2</sub>). Herein, efficient regulation of electronic and structural rearrangements in niobium-rich nickel oxides was achieved through precise compositional design and niobium cation functionalized doping, thereby greatly enhancing its intrinsic catalytic activity in hydrogen storage systems. As the niobium concentration increased, the Ni-Nb catalysts transformed into a mixed state of multi-phase nanoparticles (composed of nickel and niobium-rich nickel oxides) with smaller particle size and uniform distribution, thus exposing more nucleation sites and diffusion channels at the MgH<sub>2</sub>/Mg interface. In addition, the additional generation of active Ni-Nb-O mixed phase induced numerous highly topical disordered and distorted crystalline, promoting the transfer and reorganization of H atoms. As a result, a stable and continuous multi-phase/component synergistic catalytic microenvironment could be constructed, exerting remarkable enhancement on MgH<sub>2</sub>'s hydrogen storage performance. After comparative tests, Ni<sub>0.7</sub>Nb<sub>0.3</sub>-doped MgH<sub>2</sub> presented the optimal low-temperature kinetics with a dehydrogenation activation energy of 78.8 kJ·mol<sup>−1</sup>. The onset dehydrogenation temperature of MgH<sub>2</sub>+10 wt% Ni<sub>0.7</sub>Nb<sub>0.3</sub> was reduced to 198 °C and 6.18 wt% H<sub>2</sub> could be released at 250 °C within 10 min. In addition, the dehydrogenated MgH<sub>2</sub><img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>NiNb composites absorbed 4.87 wt% H<sub>2</sub> in 10 min at 125 °C and a capacity retention rate was maintained at 6.18 wt% even after 50 reaction cycles. In a word, our work supplies fresh insights for designing novel defective-state multiphase catalysts for hydrogen storage and other energy related field.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"105 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.10.011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic doping is one of the economic and efficient strategies to optimize the operating temperature and kinetic behavior of magnesium hydride (MgH2). Herein, efficient regulation of electronic and structural rearrangements in niobium-rich nickel oxides was achieved through precise compositional design and niobium cation functionalized doping, thereby greatly enhancing its intrinsic catalytic activity in hydrogen storage systems. As the niobium concentration increased, the Ni-Nb catalysts transformed into a mixed state of multi-phase nanoparticles (composed of nickel and niobium-rich nickel oxides) with smaller particle size and uniform distribution, thus exposing more nucleation sites and diffusion channels at the MgH2/Mg interface. In addition, the additional generation of active Ni-Nb-O mixed phase induced numerous highly topical disordered and distorted crystalline, promoting the transfer and reorganization of H atoms. As a result, a stable and continuous multi-phase/component synergistic catalytic microenvironment could be constructed, exerting remarkable enhancement on MgH2's hydrogen storage performance. After comparative tests, Ni0.7Nb0.3-doped MgH2 presented the optimal low-temperature kinetics with a dehydrogenation activation energy of 78.8 kJ·mol−1. The onset dehydrogenation temperature of MgH2+10 wt% Ni0.7Nb0.3 was reduced to 198 °C and 6.18 wt% H2 could be released at 250 °C within 10 min. In addition, the dehydrogenated MgH2NiNb composites absorbed 4.87 wt% H2 in 10 min at 125 °C and a capacity retention rate was maintained at 6.18 wt% even after 50 reaction cycles. In a word, our work supplies fresh insights for designing novel defective-state multiphase catalysts for hydrogen storage and other energy related field.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.