{"title":"A novel fine-grained TiZrCu alloy tailored for marine environment with high microbial corrosion-resistance","authors":"Jiaqi Li, Xi Ouyang, Diaofeng Li, Hang Yu, Yaozong Mao, Qing Jia, Zhiqiang Zhang, Mingxing Zhang, Chunguang Bai, Fuhui Wang, Dake Xu","doi":"10.1016/j.jmst.2024.10.018","DOIUrl":null,"url":null,"abstract":"Titanium alloys, usually known as non-corrodible material, are susceptible to microbiologically influenced corrosion (MIC) in marine environment. While titanium-zirconium (TiZr) alloys have been extensively studied in medical applications, the influence of microorganisms, especially marine microorganisms, on their corrosion behavior has not been explored. In this work, a TiZrCu alloy with a combination of excellent mechanical, anti-corrosion, and antibacterial properties was developed by optimizing the Cu content and grain refinement. Its MIC and antibacterial mechanisms against <em>Pseudomonas aeruginosa</em>, a representative marine microorganism, were systematically investigated. 5.5 wt% was determined as the optimal copper content. The fine-grained Ti-15Zr-5.5Cu (TZC-5.5FG) alloy maintained high MIC resistance, exhibiting a corrosion current of 5.7 ± 0.1 nA/cm<sup>2</sup> and an antibacterial rate of 91.8 % against <em>P. aeruginosa</em>. The mechanism of improved corrosion resistance was attributed to the denser passive film with high TiO<sub>2</sub> content and the lower surface potential difference Δ<em>E</em>. The release of Cu<sup>2+</sup> ions, Δ<em>E,</em> and the generation of ROS are three major factors that contribute to the antibacterial performance of TiZrCu alloys. Compared to other available marine metals, TZC-5.5FG alloy exhibited superior comprehensive performance, including excellent mechanical properties and anti-MIC capacity, which make it a promising material for load-bearing applications in marine environment.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.018","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium alloys, usually known as non-corrodible material, are susceptible to microbiologically influenced corrosion (MIC) in marine environment. While titanium-zirconium (TiZr) alloys have been extensively studied in medical applications, the influence of microorganisms, especially marine microorganisms, on their corrosion behavior has not been explored. In this work, a TiZrCu alloy with a combination of excellent mechanical, anti-corrosion, and antibacterial properties was developed by optimizing the Cu content and grain refinement. Its MIC and antibacterial mechanisms against Pseudomonas aeruginosa, a representative marine microorganism, were systematically investigated. 5.5 wt% was determined as the optimal copper content. The fine-grained Ti-15Zr-5.5Cu (TZC-5.5FG) alloy maintained high MIC resistance, exhibiting a corrosion current of 5.7 ± 0.1 nA/cm2 and an antibacterial rate of 91.8 % against P. aeruginosa. The mechanism of improved corrosion resistance was attributed to the denser passive film with high TiO2 content and the lower surface potential difference ΔE. The release of Cu2+ ions, ΔE, and the generation of ROS are three major factors that contribute to the antibacterial performance of TiZrCu alloys. Compared to other available marine metals, TZC-5.5FG alloy exhibited superior comprehensive performance, including excellent mechanical properties and anti-MIC capacity, which make it a promising material for load-bearing applications in marine environment.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.