Closing the Design–Make–Test–Analyze Loop: Interplay between Experiments and Predictions Drives PROTACs Bioavailability

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zulma Santisteban Valencia, Jennifer Kingston, Filip Miljković, Hannah Rowbottom, Nadia Mann, Sophie Davies, Martin Ekblad, Silvio Di Castro, Karolina Kwapień, Erik Malmerberg, Stig D. Friis, Thomas Lundbäck, Tomas Leek, Johan Wernevik
{"title":"Closing the Design–Make–Test–Analyze Loop: Interplay between Experiments and Predictions Drives PROTACs Bioavailability","authors":"Zulma Santisteban Valencia, Jennifer Kingston, Filip Miljković, Hannah Rowbottom, Nadia Mann, Sophie Davies, Martin Ekblad, Silvio Di Castro, Karolina Kwapień, Erik Malmerberg, Stig D. Friis, Thomas Lundbäck, Tomas Leek, Johan Wernevik","doi":"10.1021/acs.jmedchem.4c01642","DOIUrl":null,"url":null,"abstract":"The drug development landscape is expanding to include drug modalities such as PROteolysis-TArgeting Chimeras (PROTACs) and peptides, offering possibilities for previously intractable biological targets. However, with their size and chemical nature, they diverge from established frameworks for the prediction of oral bioavailability. This evolution to larger and more complex molecules necessitates new methodologies and prediction models to continuously expand on bioavailability guidelines. We describe the high-capacity adoption of two chromatographic physicochemical assays and their application for iterative compound optimization to achieve oral bioavailability. We further describe how these data underpin the continuous refinement of internal machine learning models, which guide compound synthesis decisions in the molecular design phase. Based on data for a set of 691 PROTACs, and two project examples, we confirm a sweet spot for oral bioavailability at log <i>D</i> values higher than the norm for small molecules and show how experimental data and prediction models synergize to effectively drive chemistry optimization.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01642","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The drug development landscape is expanding to include drug modalities such as PROteolysis-TArgeting Chimeras (PROTACs) and peptides, offering possibilities for previously intractable biological targets. However, with their size and chemical nature, they diverge from established frameworks for the prediction of oral bioavailability. This evolution to larger and more complex molecules necessitates new methodologies and prediction models to continuously expand on bioavailability guidelines. We describe the high-capacity adoption of two chromatographic physicochemical assays and their application for iterative compound optimization to achieve oral bioavailability. We further describe how these data underpin the continuous refinement of internal machine learning models, which guide compound synthesis decisions in the molecular design phase. Based on data for a set of 691 PROTACs, and two project examples, we confirm a sweet spot for oral bioavailability at log D values higher than the norm for small molecules and show how experimental data and prediction models synergize to effectively drive chemistry optimization.

Abstract Image

关闭 "设计-制造-测试-分析 "循环:实验与预测的相互作用推动了 PROTACs 生物利用率的提高
药物开发领域正在不断扩大,包括PROteolysis-TArgeting Chimeras (PROTACs) 和肽等药物模式,为以前难以解决的生物靶点提供了可能性。然而,由于它们的大小和化学性质,它们与预测口服生物利用度的既定框架存在差异。这种向更大、更复杂分子的演变需要新的方法和预测模型来不断扩展生物利用度指南。我们介绍了两种色谱理化测定的大容量采用及其在化合物迭代优化中的应用,以实现口服生物利用度。我们进一步介绍了这些数据如何支持内部机器学习模型的不断完善,这些模型可在分子设计阶段指导化合物合成决策。基于一组 691 个 PROTAC 的数据和两个项目实例,我们确认了口服生物利用度的甜蜜点,即对数 D 值高于小分子的标准值,并展示了实验数据和预测模型如何协同作用,有效推动化学优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信