Zhongmou Zhang , Nanfang Wang , Jiejie Lu , Ying Qu , Yihui Song , Xinyu Yang , Zhanyong Wei , Qi Zhang , Piet Herdewijn , Junbiao Chang , Xiao-Na Wang , Zhenya Wang
{"title":"Synthesis and pharmacodynamic evaluation of 2-aminoindole derivatives against influenza A virus in vitro/vivo","authors":"Zhongmou Zhang , Nanfang Wang , Jiejie Lu , Ying Qu , Yihui Song , Xinyu Yang , Zhanyong Wei , Qi Zhang , Piet Herdewijn , Junbiao Chang , Xiao-Na Wang , Zhenya Wang","doi":"10.1016/j.ejmech.2024.117044","DOIUrl":null,"url":null,"abstract":"<div><div>Influenza virus is a kind of respiratory pathogen with high morbidity and mortality, which still threatens human health. Existing anti-influenza drugs have various limitations, such as the inability to alleviate body injury and side effects. There remains an urgent need to develop a novel antiviral drug to efficiently inhibit viral infection while avoiding body injury. A series of 2-aminoindole derivatives were synthesized via the TMSOTf-catalyzed reactions of <em>N</em>-arylynamides with sulfilimines and evaluated for their anti-influenza virus activity. The experimental results showed that 2-aminoindole <strong>3h</strong> had significant antiviral activity (EC<sub>50</sub> = 8.37 ± 0.65 μM) and the lowest cytotoxicity (CC<sub>50</sub> = 669.26 ± 11.42 μM) <em>in vitro</em>. 2-Aminoindole <strong>3h</strong> could inhibit viral replication by effectively binding to RNA-dependent RNA polymerase (RdRp), and could also directly target host cells to inhibit cytokine storms and apoptosis induced by viral infection, thereby improving host cell survival rate. In addition, viral load and organ injury in the lung tissue of infected mice were effectively reduced by 2-aminoindole <strong>3h</strong> with satisfactory biosafety. These findings highlight the potential of a valuable therapeutic option against influenza infection while also laying the foundation for further research and development in this area.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"281 ","pages":"Article 117044"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424009267","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Influenza virus is a kind of respiratory pathogen with high morbidity and mortality, which still threatens human health. Existing anti-influenza drugs have various limitations, such as the inability to alleviate body injury and side effects. There remains an urgent need to develop a novel antiviral drug to efficiently inhibit viral infection while avoiding body injury. A series of 2-aminoindole derivatives were synthesized via the TMSOTf-catalyzed reactions of N-arylynamides with sulfilimines and evaluated for their anti-influenza virus activity. The experimental results showed that 2-aminoindole 3h had significant antiviral activity (EC50 = 8.37 ± 0.65 μM) and the lowest cytotoxicity (CC50 = 669.26 ± 11.42 μM) in vitro. 2-Aminoindole 3h could inhibit viral replication by effectively binding to RNA-dependent RNA polymerase (RdRp), and could also directly target host cells to inhibit cytokine storms and apoptosis induced by viral infection, thereby improving host cell survival rate. In addition, viral load and organ injury in the lung tissue of infected mice were effectively reduced by 2-aminoindole 3h with satisfactory biosafety. These findings highlight the potential of a valuable therapeutic option against influenza infection while also laying the foundation for further research and development in this area.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.