Giuseppe Cosentino , Maria Dichiara , Francesca Alessandra Ambrosio , Claudia Giovanna Leotta , Giosuè Costa , Francesca Procopio , Giuliana Costanzo , Alessandro Raffa , Antonia Artacho-Cordón , M. Carmen Ruiz-Cantero , Lorella Pasquinucci , Agostino Marrazzo , Giovanni Mario Pitari , Enrique J. Cobos , Stefano Alcaro , Emanuele Amata
{"title":"Development of selective sigma-1 receptor ligands with antiallodynic activity: A focus on piperidine and piperazine scaffolds","authors":"Giuseppe Cosentino , Maria Dichiara , Francesca Alessandra Ambrosio , Claudia Giovanna Leotta , Giosuè Costa , Francesca Procopio , Giuliana Costanzo , Alessandro Raffa , Antonia Artacho-Cordón , M. Carmen Ruiz-Cantero , Lorella Pasquinucci , Agostino Marrazzo , Giovanni Mario Pitari , Enrique J. Cobos , Stefano Alcaro , Emanuele Amata","doi":"10.1016/j.ejmech.2024.117037","DOIUrl":null,"url":null,"abstract":"<div><div>The design and synthesis of a series of piperidine and piperazine-based derivatives as selective sigma receptor (SR) ligands associated with analgesic activity, are the focus of this work. In this study, affinities at S1R and S2R were measured, and molecular modeling studies were performed to investigate the binding pose features. The most promising compounds were subjected to <em>in vitro</em> toxicity testing and subsequently screened for <em>in vivo</em> analgesic properties. Compounds <strong>12a</strong> (AD353) and <strong>12c</strong> (AD408) exhibited negligible <em>in vitro</em> cellular toxicity and high potency both in a model of capsaicin-induced allodynia and in PGE2-induced mechanical hyperalgesia. Functional activity experiments showed that S1R antagonism is needed for the effects of these compounds, since the effect was reversed by PRE-084 or absent in KO mice. In addition, <strong>12a</strong> exhibited a favorable pharmacokinetic profile, confirming its therapeutic value in treating allodynic conditions. Moreover, a computational model was developed in order to help the understanding about the mechanism of action of most active compounds.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"281 ","pages":"Article 117037"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S022352342400919X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The design and synthesis of a series of piperidine and piperazine-based derivatives as selective sigma receptor (SR) ligands associated with analgesic activity, are the focus of this work. In this study, affinities at S1R and S2R were measured, and molecular modeling studies were performed to investigate the binding pose features. The most promising compounds were subjected to in vitro toxicity testing and subsequently screened for in vivo analgesic properties. Compounds 12a (AD353) and 12c (AD408) exhibited negligible in vitro cellular toxicity and high potency both in a model of capsaicin-induced allodynia and in PGE2-induced mechanical hyperalgesia. Functional activity experiments showed that S1R antagonism is needed for the effects of these compounds, since the effect was reversed by PRE-084 or absent in KO mice. In addition, 12a exhibited a favorable pharmacokinetic profile, confirming its therapeutic value in treating allodynic conditions. Moreover, a computational model was developed in order to help the understanding about the mechanism of action of most active compounds.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.