Convective and Orographic Origins of the Mesoscale Kinetic Energy Spectrum

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Salah Kouhen, Benjamin A. Storer, Hussein Aluie, David P. Marshall, Hannah M. Christensen
{"title":"Convective and Orographic Origins of the Mesoscale Kinetic Energy Spectrum","authors":"Salah Kouhen,&nbsp;Benjamin A. Storer,&nbsp;Hussein Aluie,&nbsp;David P. Marshall,&nbsp;Hannah M. Christensen","doi":"10.1029/2024GL110804","DOIUrl":null,"url":null,"abstract":"<p>The mesoscale spectrum describes the distribution of kinetic energy in the Earth's atmosphere between length scales of 10 and 400 km. Since the first observations, the origins of this spectrum have been controversial. At synoptic scales, the spectrum follows a −3 spectral slope, consistent with two-dimensional turbulence theory, but a shallower −5/3 slope was observed at the shorter mesoscales. The cause of the shallower slope remains obscure, illustrating our lack of understanding. Through a novel coarse-graining methodology, we are able to present a spatio-temporal climatology of the spectral slope. We find convection and orography have a shallowing effect and can quantify this using “conditioned spectra.” These are typical spectra for a meteorological condition, obtained by aggregating spectra where the condition holds. This allows the investigation of new relationships, such as that between energy flux and spectral slope. Potential future applications of our methodology include predictability research and model validation.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 21","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110804","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110804","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mesoscale spectrum describes the distribution of kinetic energy in the Earth's atmosphere between length scales of 10 and 400 km. Since the first observations, the origins of this spectrum have been controversial. At synoptic scales, the spectrum follows a −3 spectral slope, consistent with two-dimensional turbulence theory, but a shallower −5/3 slope was observed at the shorter mesoscales. The cause of the shallower slope remains obscure, illustrating our lack of understanding. Through a novel coarse-graining methodology, we are able to present a spatio-temporal climatology of the spectral slope. We find convection and orography have a shallowing effect and can quantify this using “conditioned spectra.” These are typical spectra for a meteorological condition, obtained by aggregating spectra where the condition holds. This allows the investigation of new relationships, such as that between energy flux and spectral slope. Potential future applications of our methodology include predictability research and model validation.

Abstract Image

中尺度动能谱的对流和水文起源
中尺度频谱描述了地球大气中长度尺度在 10 至 400 公里之间的动能分布。自首次观测以来,该频谱的起源一直存在争议。在同步尺度上,该频谱的频谱斜率为-3,与二维湍流理论一致,但在较短的中尺度上观测到的斜率较浅,为-5/3。造成这种较浅斜率的原因仍不清楚,这说明我们对其缺乏了解。通过一种新颖的粗粒度方法,我们能够提出频谱斜率的时空气候学。我们发现对流和地形会产生较浅的影响,并能利用 "条件光谱 "对其进行量化。这些光谱是某一气象条件下的典型光谱,通过汇总条件成立的光谱而获得。这样就可以研究新的关系,如能量通量与光谱斜率之间的关系。我们的方法在未来的潜在应用包括可预测性研究和模型验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信