Development of detachment fault system associated with a mature metamorphic core complex: Insight from the Kaiping Sag, northern South China Sea rifted margin
Gengbiao Li, Qing Ye, Guangrong Peng, Zhaoqian Liu, Lili Zhang, Shihao Hao, Xinming Xu, Lianfu Mei
{"title":"Development of detachment fault system associated with a mature metamorphic core complex: Insight from the Kaiping Sag, northern South China Sea rifted margin","authors":"Gengbiao Li, Qing Ye, Guangrong Peng, Zhaoqian Liu, Lili Zhang, Shihao Hao, Xinming Xu, Lianfu Mei","doi":"10.1111/bre.70006","DOIUrl":null,"url":null,"abstract":"<p>Detachment fault system associated with a mature metamorphic core complex (MCC) is still not well understood. Using high-resolution 3D seismic data, we analyse the geometries and kinematic development of detachment fault system associated with a mature and exhumated MCC in the northern South China Sea rifted margin, with an emphasis on the MCC-associated faults within the supra-detachment basin. Faults within the supra-detachment basin can be classified into three stages, the pre-MCC, syn-MCC and post-MCC faults, based on their formation time relative to the MCC. The NE to NEE-striking pre-MCC faults developed in the early syn-rift 1 stage, and the NW to WNW-striking post-MCC faults were both dominated by the regional tectonics and are perpendicular to the extension directions. While the syn-MCC faults, synchronous with the MCC development in the late syn-rift 1 stage, show overall EW-striking, consistent with the long axis of the KP MCC. These syn-MCC faults were well developed and are significant in shaping the basin architecture. Besides, the syn-MCC faults are regularly distributed in the four zones overlying the convex-upward master detachment fault surface, and are defined in this study as a synthetic fault zone, an upper collapse synformal-graben fault zone, a lower collapse antiformal-graben fault zone and an antithetic fault zone respectively. These four fault zones show distinct features and evolutionary patterns, and have a closed relationship with the rolling-hinge process of the KP MCC. An evolutionary model is established for the development of MCC-associated detachment fault system which should have global implications.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.70006","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Detachment fault system associated with a mature metamorphic core complex (MCC) is still not well understood. Using high-resolution 3D seismic data, we analyse the geometries and kinematic development of detachment fault system associated with a mature and exhumated MCC in the northern South China Sea rifted margin, with an emphasis on the MCC-associated faults within the supra-detachment basin. Faults within the supra-detachment basin can be classified into three stages, the pre-MCC, syn-MCC and post-MCC faults, based on their formation time relative to the MCC. The NE to NEE-striking pre-MCC faults developed in the early syn-rift 1 stage, and the NW to WNW-striking post-MCC faults were both dominated by the regional tectonics and are perpendicular to the extension directions. While the syn-MCC faults, synchronous with the MCC development in the late syn-rift 1 stage, show overall EW-striking, consistent with the long axis of the KP MCC. These syn-MCC faults were well developed and are significant in shaping the basin architecture. Besides, the syn-MCC faults are regularly distributed in the four zones overlying the convex-upward master detachment fault surface, and are defined in this study as a synthetic fault zone, an upper collapse synformal-graben fault zone, a lower collapse antiformal-graben fault zone and an antithetic fault zone respectively. These four fault zones show distinct features and evolutionary patterns, and have a closed relationship with the rolling-hinge process of the KP MCC. An evolutionary model is established for the development of MCC-associated detachment fault system which should have global implications.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.