Biopolymers as three-dimensional structural binders for nickel-cobalt sulfide supercapacitor electrodes

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Jiamei Li , Zhe Chen , Fuqiang Chen , Zhijin Zhu , Tongwei Shen , Yunxiang Chen , Yaliang Chen , Yanqun Shao
{"title":"Biopolymers as three-dimensional structural binders for nickel-cobalt sulfide supercapacitor electrodes","authors":"Jiamei Li ,&nbsp;Zhe Chen ,&nbsp;Fuqiang Chen ,&nbsp;Zhijin Zhu ,&nbsp;Tongwei Shen ,&nbsp;Yunxiang Chen ,&nbsp;Yaliang Chen ,&nbsp;Yanqun Shao","doi":"10.1016/j.electacta.2024.145345","DOIUrl":null,"url":null,"abstract":"<div><div>Ion diffusion and electron transfer are hindered by commonly used hydrophobic binders, which directly affect the electrochemical performance of the electrodes. Hydrophilic binders are selected to efficaciously solve the problem of relatively low actual specific capacitance and rate performance in the field of nickel cobalt sulfide electrode materials. In the paper, RuCoNiS electrodes were prepared using polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), xanthan gum (XG), and chitosan (CS) as binders. The surface wettability, morphological structure, specific surface area, and electrochemical performance of electrodes with different binders were analyzed by XRD, SEM, BET, CV, GCD, and EIS, etc. It's shown that the synthesis of CoNi<sub>2</sub>S is confirmed by XRD. The XPS results verify the existence of RuO<sub>2</sub> and Ni<sup>2+</sup>/Ni<sup>3+</sup> and Co<sup>2+</sup>/Co<sup>3+</sup> redox couples. A cross-linked network structure is formed on the surface of the RuCoNiS by CS. The CS-RuCoNiS electrode has the largest specific surface area and microporosity. Ion migration in the electrolyte is facilitated by the excellent wettability of the CS-RuCoNiS electrode. The CS-RuCoNiS electrode reachs 1193.52 F g<sup>-1</sup>, which is 1.74 times higher than that of the PTFE-RuCoNiS electrode at 1 A g<sup>-1</sup>. The CS binder with its three-dimensional structure has the highest ionic conductivity of 2.29 × 10<sup>-4</sup> S cm<sup>-1</sup>, a lower R<sub>ct</sub>, good cycling stability with a capacity retention of 84.3 % after 5000 cycles at 200 mV s<sup>-1</sup>, and excellent rate performance of 85.6 %. It can provide a practical application in supercapacitors.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"510 ","pages":"Article 145345"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015810","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Ion diffusion and electron transfer are hindered by commonly used hydrophobic binders, which directly affect the electrochemical performance of the electrodes. Hydrophilic binders are selected to efficaciously solve the problem of relatively low actual specific capacitance and rate performance in the field of nickel cobalt sulfide electrode materials. In the paper, RuCoNiS electrodes were prepared using polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), xanthan gum (XG), and chitosan (CS) as binders. The surface wettability, morphological structure, specific surface area, and electrochemical performance of electrodes with different binders were analyzed by XRD, SEM, BET, CV, GCD, and EIS, etc. It's shown that the synthesis of CoNi2S is confirmed by XRD. The XPS results verify the existence of RuO2 and Ni2+/Ni3+ and Co2+/Co3+ redox couples. A cross-linked network structure is formed on the surface of the RuCoNiS by CS. The CS-RuCoNiS electrode has the largest specific surface area and microporosity. Ion migration in the electrolyte is facilitated by the excellent wettability of the CS-RuCoNiS electrode. The CS-RuCoNiS electrode reachs 1193.52 F g-1, which is 1.74 times higher than that of the PTFE-RuCoNiS electrode at 1 A g-1. The CS binder with its three-dimensional structure has the highest ionic conductivity of 2.29 × 10-4 S cm-1, a lower Rct, good cycling stability with a capacity retention of 84.3 % after 5000 cycles at 200 mV s-1, and excellent rate performance of 85.6 %. It can provide a practical application in supercapacitors.
生物聚合物作为硫化镍钴超级电容器电极的三维结构粘合剂
常用的疏水性粘合剂会阻碍离子扩散和电子转移,直接影响电极的电化学性能。为了有效解决硫化钴镍电极材料实际比电容和速率性能相对较低的问题,我们选择了亲水性粘合剂。本文以聚四氟乙烯(PTFE)、羧甲基纤维素(CMC)、黄原胶(XG)和壳聚糖(CS)为粘合剂,制备了 RuCoNiS 电极。通过 XRD、SEM、BET、CV、GCD 和 EIS 等方法分析了不同粘合剂电极的表面润湿性、形貌结构、比表面积和电化学性能。结果表明,XRD 证实了 CoNi2S 的合成。XPS 结果验证了 RuO2 和 Ni2+/Ni3+ 以及 Co2+/Co3+ 氧化还原偶的存在。CS 在 RuCoNiS 表面形成了交联网络结构。CS-RuCoNiS 电极具有最大的比表面积和微孔。CS-RuCoNiS 电极出色的润湿性促进了离子在电解液中的迁移。CS-RuCoNiS 电极可达到 1193.52 F g-1,是 1 A g-1 时 PTFE-RuCoNiS 电极的 1.74 倍。具有三维结构的 CS 粘合剂具有最高的离子电导率(2.29 × 10-4 S cm-1)、较低的 Rct、良好的循环稳定性(在 200 mV s-1 下循环 5000 次后容量保持率为 84.3%)和优异的速率性能(85.6%)。它可以在超级电容器中得到实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信