Mengyang Zhou, Michael D. Tyka, David T. Ho, Elizabeth Yankovsky, Scott Bachman, Thomas Nicholas, Alicia R. Karspeck, Matthew C. Long
{"title":"Mapping the global variation in the efficiency of ocean alkalinity enhancement for carbon dioxide removal","authors":"Mengyang Zhou, Michael D. Tyka, David T. Ho, Elizabeth Yankovsky, Scott Bachman, Thomas Nicholas, Alicia R. Karspeck, Matthew C. Long","doi":"10.1038/s41558-024-02179-9","DOIUrl":null,"url":null,"abstract":"<p>To limit global warming to below 2 °C by 2100, CO<sub>2</sub> removal from the atmosphere will be necessary. One promising method for achieving CO<sub>2</sub> removal at scale is ocean alkalinity enhancement (OAE), but there are challenges with incomplete air–sea CO<sub>2</sub> equilibration, which reduces the efficiency of carbon removal. Here, we present global maps of OAE efficiency, and assess the seasonal variation in efficiency. We find that the equilibration kinetics have two characteristic timescales: rapid surface equilibration followed by a slower second phase, which represents the re-emergence of excess alkalinity that was initially subducted. These kinetics vary considerably with latitude and the season of alkalinity release, which are critical factors for determining the placement of potential OAE deployments. Additionally, we quantify the spatial and temporal scales of the induced CO<sub>2</sub> uptake, which helps identify the requirements for modelling OAE in regional ocean models.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"69 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-024-02179-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
To limit global warming to below 2 °C by 2100, CO2 removal from the atmosphere will be necessary. One promising method for achieving CO2 removal at scale is ocean alkalinity enhancement (OAE), but there are challenges with incomplete air–sea CO2 equilibration, which reduces the efficiency of carbon removal. Here, we present global maps of OAE efficiency, and assess the seasonal variation in efficiency. We find that the equilibration kinetics have two characteristic timescales: rapid surface equilibration followed by a slower second phase, which represents the re-emergence of excess alkalinity that was initially subducted. These kinetics vary considerably with latitude and the season of alkalinity release, which are critical factors for determining the placement of potential OAE deployments. Additionally, we quantify the spatial and temporal scales of the induced CO2 uptake, which helps identify the requirements for modelling OAE in regional ocean models.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.