Degradation of alkali-activated Fe-rich slag in acetic acid

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Nana Wen , Ziyou Yu , Vincent Hallet , Arne Peys , Dimitrios Sakellariou , Yiannis Pontikes
{"title":"Degradation of alkali-activated Fe-rich slag in acetic acid","authors":"Nana Wen ,&nbsp;Ziyou Yu ,&nbsp;Vincent Hallet ,&nbsp;Arne Peys ,&nbsp;Dimitrios Sakellariou ,&nbsp;Yiannis Pontikes","doi":"10.1016/j.cemconres.2024.107715","DOIUrl":null,"url":null,"abstract":"<div><div>Alkali-activated Fe-rich non-ferrous metallurgical slags (AA-NFMS) emerge as a novel, sustainable cementitious binder, but durability performance is one of the crucial parameters to assess their success. This paper investigates the degradation mechanisms of AA-NFMS in 4 wt% acetic acid (AcH) solutions, commonly found in agricultural industries. The results indicated that upon AcH exposure, the amorphous structure of AA-NFMS is changed. This process is accompanied by the release of crucial elements, including Ca, Fe, and a smaller amount of Al and Si, resulting in the formation of a more polymerized network. Fe could precipitate near the formed cracks. EPMA and micro-CT revealed the important role of crack formation and the initial permeability of AA-NFMS on the degradation process. Additionally, strength change does not correlate with mass change but is closely related to the permeability. Notably, AA-NFMS with 10 wt% CaO demonstrates the highest strength after AcH exposure.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"187 ","pages":"Article 107715"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002965","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alkali-activated Fe-rich non-ferrous metallurgical slags (AA-NFMS) emerge as a novel, sustainable cementitious binder, but durability performance is one of the crucial parameters to assess their success. This paper investigates the degradation mechanisms of AA-NFMS in 4 wt% acetic acid (AcH) solutions, commonly found in agricultural industries. The results indicated that upon AcH exposure, the amorphous structure of AA-NFMS is changed. This process is accompanied by the release of crucial elements, including Ca, Fe, and a smaller amount of Al and Si, resulting in the formation of a more polymerized network. Fe could precipitate near the formed cracks. EPMA and micro-CT revealed the important role of crack formation and the initial permeability of AA-NFMS on the degradation process. Additionally, strength change does not correlate with mass change but is closely related to the permeability. Notably, AA-NFMS with 10 wt% CaO demonstrates the highest strength after AcH exposure.
碱活性富铁炉渣在醋酸中的降解
碱活化富铁有色冶金渣(AA-NFMS)是一种新型、可持续的水泥基粘结剂,但耐久性能是评估其成功与否的关键参数之一。本文研究了 AA-NFMS 在 4 wt% 的醋酸(AcH)溶液中的降解机制,醋酸常见于农业工业。结果表明,接触 AcH 后,AA-NFMS 的无定形结构发生了变化。这一过程伴随着关键元素的释放,包括钙、铁以及少量的铝和硅,从而形成了更加聚合的网络。铁可能会在形成的裂缝附近析出。EPMA 和显微 CT 显示了裂纹形成和 AA-NFMS 初始渗透性对降解过程的重要作用。此外,强度变化与质量变化无关,但与渗透性密切相关。值得注意的是,含有 10 wt% CaO 的 AA-NFMS 在暴露于 AcH 后强度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信