{"title":"Experimental investigation of single drop breakup in a confined turbulent wall-jet – Effect of Weber number","authors":"Andreas Håkansson, Peyman Olad","doi":"10.1016/j.ces.2024.120920","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses an experimental scale-up model together with a high-speed camera setup to quantitatively study the effect of Weber number on the breakup probability, deformation time, breakup time, breakup position, and breakup rate in this geometry in a turbulent jet. Results show an increase in breakup probability and a decrease in deformation and breakup times with increasing Weber number. Breakup also occurs earlier with higher Weber numbers. Breakup time is predicted by the time it takes the drop to reach the intense turbulent stresses in the jet shear layers. Whereas breakup typically occur via a bulb-neck mechanism, drops are more chaotically deformed when breaking, if doing so at a higher Weber number. Breakup rates increase with Weber number. However, the position of the maximum local breakup rate is somewhat Weber number dependent. Results shed light on the breakup in these devices and can be used for validating breakup models.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"302 ","pages":"Article 120920"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000925092401220X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study uses an experimental scale-up model together with a high-speed camera setup to quantitatively study the effect of Weber number on the breakup probability, deformation time, breakup time, breakup position, and breakup rate in this geometry in a turbulent jet. Results show an increase in breakup probability and a decrease in deformation and breakup times with increasing Weber number. Breakup also occurs earlier with higher Weber numbers. Breakup time is predicted by the time it takes the drop to reach the intense turbulent stresses in the jet shear layers. Whereas breakup typically occur via a bulb-neck mechanism, drops are more chaotically deformed when breaking, if doing so at a higher Weber number. Breakup rates increase with Weber number. However, the position of the maximum local breakup rate is somewhat Weber number dependent. Results shed light on the breakup in these devices and can be used for validating breakup models.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.