High transmittance, high haze, and UV-harvesting CNNs@CNF/PVA composite film for light management

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Xiaokang Dai, Longxiang Wang, Ahmed M. Fallatah, Xing Wang, Abdulraheem S. A. Almalki, Yiyu Qi, Xiaoyu Jin, Shengxiang Yang, Bingnan Yuan
{"title":"High transmittance, high haze, and UV-harvesting CNNs@CNF/PVA composite film for light management","authors":"Xiaokang Dai,&nbsp;Longxiang Wang,&nbsp;Ahmed M. Fallatah,&nbsp;Xing Wang,&nbsp;Abdulraheem S. A. Almalki,&nbsp;Yiyu Qi,&nbsp;Xiaoyu Jin,&nbsp;Shengxiang Yang,&nbsp;Bingnan Yuan","doi":"10.1007/s42114-024-01050-x","DOIUrl":null,"url":null,"abstract":"<div><p>Translucent materials are widely used in indoor lighting, electronic display devices, photovoltaic devices, and other aspects of daily life. Developing materials with high transparency that can effectively manage the transmitted light spectrum is of significant practical importance. This study focuses on constructing a flexible composite film matrix using biomass nanocellulose fibrils (CNF) and polyvinyl alcohol (PVA) as raw materials. Based on the down-conversion luminescence principle, we use carbon nitride nanosheets (CNNs) as the core for light management, filtering UV rays from sunlight while converting them into visible light for light compensation. The transparency test results show that the prepared CNNs@CNF/PVA flexible composite film has a total transmittance of about 90% in the visible light range, with a haze greater than 60%. Three-dimensional fluorescence test results indicate that CNNs@CNF/PVA can convert UV light in the range of 250–375 nm into visible light in the range of 420–550 nm. Simulated outdoor lighting results show that the composite film material performs better than ordinary glass and PMMA in light transmission. This biomass-based flexible film material is expected to have broad applications in indoor lighting, flexible photovoltaic devices, and high-quality fruit and vegetable cultivation.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01050-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Translucent materials are widely used in indoor lighting, electronic display devices, photovoltaic devices, and other aspects of daily life. Developing materials with high transparency that can effectively manage the transmitted light spectrum is of significant practical importance. This study focuses on constructing a flexible composite film matrix using biomass nanocellulose fibrils (CNF) and polyvinyl alcohol (PVA) as raw materials. Based on the down-conversion luminescence principle, we use carbon nitride nanosheets (CNNs) as the core for light management, filtering UV rays from sunlight while converting them into visible light for light compensation. The transparency test results show that the prepared CNNs@CNF/PVA flexible composite film has a total transmittance of about 90% in the visible light range, with a haze greater than 60%. Three-dimensional fluorescence test results indicate that CNNs@CNF/PVA can convert UV light in the range of 250–375 nm into visible light in the range of 420–550 nm. Simulated outdoor lighting results show that the composite film material performs better than ordinary glass and PMMA in light transmission. This biomass-based flexible film material is expected to have broad applications in indoor lighting, flexible photovoltaic devices, and high-quality fruit and vegetable cultivation.

用于光管理的高透光率、高雾度和紫外线吸收 CNNs@CNF/PVA 复合薄膜
半透明材料广泛应用于室内照明、电子显示设备、光伏设备以及日常生活的其他方面。开发能有效管理透射光谱的高透明度材料具有重要的现实意义。本研究以生物质纳米纤维素纤维(CNF)和聚乙烯醇(PVA)为原料,构建柔性复合薄膜基体。基于下转换发光原理,我们以氮化碳纳米片(CNNs)为核心进行光管理,过滤阳光中的紫外线,同时将其转化为可见光进行光补偿。透明度测试结果表明,制备的 CNNs@CNF/PVA 柔性复合膜在可见光范围内的总透光率约为 90%,雾度大于 60%。三维荧光测试结果表明,CNNs@CNF/PVA 可将 250-375 纳米范围内的紫外线转化为 420-550 纳米范围内的可见光。模拟室外照明结果表明,这种复合薄膜材料的透光性能优于普通玻璃和 PMMA。这种基于生物质的柔性薄膜材料有望在室内照明、柔性光伏设备和优质果蔬栽培方面得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信