LightFS: A Lightweight Host-CSD Coordinated File System Optimizing for Heavy Small File Accesses

IF 2.7 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jiali Li;Zhaoyan Shen;Duo Liu;Xianzhang Chen;Kan Zhong;Zhaoyang Zeng;Yujuan Tan
{"title":"LightFS: A Lightweight Host-CSD Coordinated File System Optimizing for Heavy Small File Accesses","authors":"Jiali Li;Zhaoyan Shen;Duo Liu;Xianzhang Chen;Kan Zhong;Zhaoyang Zeng;Yujuan Tan","doi":"10.1109/TCAD.2024.3443010","DOIUrl":null,"url":null,"abstract":"Computational storage drive (CSD) improves the data processing efficiency by processing the data within the storage. However, existing CSDs rely on the host-centric file systems to manage the data, where the layouts of files are retrieved by the host and sent to the CSD, resulting in additional I/O overhead and reduced processing efficiency, especially in heavy small file accesses. Moreover, the lack of consistency mechanisms poses potential consistency issues. To address these challenges, we propose LightFS, a lightweight host-CSD coordinated file system for the CSD file management. To reduce task offloading overhead, LightFS builds an index file \n<inline-formula> <tex-math>$.ndpmeta$ </tex-math></inline-formula>\n which summarizes the files’ metadata and shares between the host and CSD to enable CSD to retrieve the file layout in storage directly. To ensure consistency, LightFS employs a metadata locker and an update synchronizer. The metadata locker leverages the out-of-place update feature of the flash to capture a snapshot of the file to be written without any data copy, while the update synchronizer triggers metadata updates by monitoring the addresses of written blocks to ensure that the modified file is successfully written to the CSD. We implement and evaluate LightFS on a real testbed, and the results demonstrate that LightFS achieves \n<inline-formula> <tex-math>$3.66\\times $ </tex-math></inline-formula>\n performance improvement on the average in real-world operations.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"3527-3538"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745815/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Computational storage drive (CSD) improves the data processing efficiency by processing the data within the storage. However, existing CSDs rely on the host-centric file systems to manage the data, where the layouts of files are retrieved by the host and sent to the CSD, resulting in additional I/O overhead and reduced processing efficiency, especially in heavy small file accesses. Moreover, the lack of consistency mechanisms poses potential consistency issues. To address these challenges, we propose LightFS, a lightweight host-CSD coordinated file system for the CSD file management. To reduce task offloading overhead, LightFS builds an index file $.ndpmeta$ which summarizes the files’ metadata and shares between the host and CSD to enable CSD to retrieve the file layout in storage directly. To ensure consistency, LightFS employs a metadata locker and an update synchronizer. The metadata locker leverages the out-of-place update feature of the flash to capture a snapshot of the file to be written without any data copy, while the update synchronizer triggers metadata updates by monitoring the addresses of written blocks to ensure that the modified file is successfully written to the CSD. We implement and evaluate LightFS on a real testbed, and the results demonstrate that LightFS achieves $3.66\times $ performance improvement on the average in real-world operations.
LightFS:优化重型小文件访问的轻量级主机-CSD 协调文件系统
计算存储驱动器(CSD)通过在存储区内处理数据来提高数据处理效率。然而,现有的 CSD 依赖于以主机为中心的文件系统来管理数据,文件的布局由主机检索并发送到 CSD,从而导致额外的 I/O 开销,降低了处理效率,尤其是在大量小文件访问时。此外,缺乏一致性机制也会带来潜在的一致性问题。为了应对这些挑战,我们提出了用于 CSD 文件管理的轻量级主机-CSD 协调文件系统 LightFS。为了减少任务卸载开销,LightFS建立了一个索引文件$.ndpmeta$,该文件汇总了文件的元数据,并在主机和CSD之间共享,使CSD能够直接检索存储中的文件布局。为确保一致性,LightFS 采用了元数据锁和更新同步器。元数据锁定器利用闪存的就地更新功能捕获待写文件的快照,而无需复制任何数据;更新同步器则通过监控写入块的地址触发元数据更新,以确保修改后的文件成功写入CSD。我们在一个真实的测试平台上实现并评估了LightFS,结果表明LightFS在实际操作中平均实现了3.66美元/次的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
13.80%
发文量
500
审稿时长
7 months
期刊介绍: The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信