Benefits and complexity of defects in metal-organic frameworks

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
N. S. Portillo-Vélez, Juan L. Obeso, José Antonio de los Reyes, Ricardo A. Peralta, Ilich A. Ibarra, Michael T. Huxley
{"title":"Benefits and complexity of defects in metal-organic frameworks","authors":"N. S. Portillo-Vélez, Juan L. Obeso, José Antonio de los Reyes, Ricardo A. Peralta, Ilich A. Ibarra, Michael T. Huxley","doi":"10.1038/s43246-024-00691-1","DOIUrl":null,"url":null,"abstract":"Defect engineering has developed over the last decade to become an inimitable tool with which to shape Metal-Organic Framework (MOF) chemistry; part of an evolution in the perception of MOFs from perfect, rigid matrices to dynamic materials whose chemistry is shaped as much by imperfections as it is by their molecular components. However, challenges in defect characterisation and reproducibility persist and, coupled with an as-yet opaque role for synthetic parameters in defect formation, deny chemists the full potential of reticular synthesis. Herein we map the broad implications defects have on MOF properties, highlight key challenges and explore the remarkable ways imperfection enriches MOF chemistry. Engineering defects into metal-organic frameworks is a strategy to grant additional properties but there are still challenges with their reproducibility. Here, this Perspective presents the benefits of defects in metal-organic framework properties and key challenges in the field.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-15"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00691-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00691-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Defect engineering has developed over the last decade to become an inimitable tool with which to shape Metal-Organic Framework (MOF) chemistry; part of an evolution in the perception of MOFs from perfect, rigid matrices to dynamic materials whose chemistry is shaped as much by imperfections as it is by their molecular components. However, challenges in defect characterisation and reproducibility persist and, coupled with an as-yet opaque role for synthetic parameters in defect formation, deny chemists the full potential of reticular synthesis. Herein we map the broad implications defects have on MOF properties, highlight key challenges and explore the remarkable ways imperfection enriches MOF chemistry. Engineering defects into metal-organic frameworks is a strategy to grant additional properties but there are still challenges with their reproducibility. Here, this Perspective presents the benefits of defects in metal-organic framework properties and key challenges in the field.

Abstract Image

金属有机框架缺陷的益处和复杂性
过去十年来,缺陷工程已发展成为塑造金属有机框架(MOF)化学性质的独特工具;MOF 从完美、僵硬的基质发展成为动态材料,其化学性质既受其分子成分的影响,也受其缺陷的影响。然而,缺陷表征和可重复性方面的挑战依然存在,再加上合成参数在缺陷形成中的作用尚不明确,使得化学家无法充分发挥网状合成的潜力。在此,我们将描绘缺陷对 MOF 特性的广泛影响,强调关键挑战,并探索不完美如何丰富 MOF 化学。在金属有机框架中设计缺陷是赋予其额外特性的一种策略,但其可重复性仍面临挑战。本视角介绍了缺陷对金属有机框架特性的益处以及该领域的主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信