Effect of process parameters of selective laser melting on the structure, texture, and mechanical properties of an alloy based on orthorhombic titanium aluminide Ti2AlNb
IF 0.8 4区 材料科学Q4 METALLURGY & METALLURGICAL ENGINEERING
A. G. Illarionov, S. L. Demakov, S. I. Stepanov, M. S. Karabanalov, K. I. Lugovaya, M. A. Shabanov, A. A. Popov
{"title":"Effect of process parameters of selective laser melting on the structure, texture, and mechanical properties of an alloy based on orthorhombic titanium aluminide Ti2AlNb","authors":"A. G. Illarionov, S. L. Demakov, S. I. Stepanov, M. S. Karabanalov, K. I. Lugovaya, M. A. Shabanov, A. A. Popov","doi":"10.1007/s11015-024-01792-5","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of selective laser melting (SLM) process parameters on the porosity, microstructure, phase and chemical composition, texture, and physical-mechanical properties of orthorhombic titanium aluminide Ti<sub>2</sub>AlNb (O-alloy) powder was studied using a range of methods, including hydrostatic weighing, scanning and transmission electron microscopy, X‑ray diffraction analysis, energy-dispersive X‑ray spectroscopy, microindentation, and compression testing. It was demonstrated that an increase in the volumetric energy density within the range of 28 to 139 J/mm<sup>3</sup> led to the following effects: 1) increase in the relative density of the obtained O‑alloy from 97 to 99.9%, 2) intensification of axial texture with a pronounced 001 direction in the detected β/B2-solid solution, and 3) reduction in the Al content, increase in the Nb content, and lower enrichment with oxygen in the obtained samples. It was demonstrated that detachment from the build platform and longitudinal cutting of the O‑alloy results in the imbalance of residual stresses in samples synthesized on a platform, pre-heated at 200 °C, which is accompanied by the formation of cracks. This study considers the typical structural defects of the alloy, including pores, lack of fusion, and chemical heterogeneity, which are observed following SLM. A series of physical-mechanical properties of the synthesized O‑alloy samples were determined, including Vickers hardness (390–430 <i>HV</i>), elastic modulus (91–98 GPa), compressive yield strength (1060–1080 MPa), and compressive strain (of at least 30%). The relationship between these properties and the structural-textural state of the obtained O‑alloy samples is discussed.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 6","pages":"845 - 854"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01792-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of selective laser melting (SLM) process parameters on the porosity, microstructure, phase and chemical composition, texture, and physical-mechanical properties of orthorhombic titanium aluminide Ti2AlNb (O-alloy) powder was studied using a range of methods, including hydrostatic weighing, scanning and transmission electron microscopy, X‑ray diffraction analysis, energy-dispersive X‑ray spectroscopy, microindentation, and compression testing. It was demonstrated that an increase in the volumetric energy density within the range of 28 to 139 J/mm3 led to the following effects: 1) increase in the relative density of the obtained O‑alloy from 97 to 99.9%, 2) intensification of axial texture with a pronounced 001 direction in the detected β/B2-solid solution, and 3) reduction in the Al content, increase in the Nb content, and lower enrichment with oxygen in the obtained samples. It was demonstrated that detachment from the build platform and longitudinal cutting of the O‑alloy results in the imbalance of residual stresses in samples synthesized on a platform, pre-heated at 200 °C, which is accompanied by the formation of cracks. This study considers the typical structural defects of the alloy, including pores, lack of fusion, and chemical heterogeneity, which are observed following SLM. A series of physical-mechanical properties of the synthesized O‑alloy samples were determined, including Vickers hardness (390–430 HV), elastic modulus (91–98 GPa), compressive yield strength (1060–1080 MPa), and compressive strain (of at least 30%). The relationship between these properties and the structural-textural state of the obtained O‑alloy samples is discussed.
期刊介绍:
Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956.
Basic topics covered include:
State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining;
Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment;
Automation and control;
Protection of labor;
Protection of the environment;
Resources and energy saving;
Quality and certification;
History of metallurgy;
Inventions (patents).