{"title":"Silk damping in scalar-induced gravitational waves: a novel probe for new physics","authors":"Yan-Heng Yu, Sai Wang","doi":"10.1007/s11433-024-2499-9","DOIUrl":null,"url":null,"abstract":"<div><p>Silk damping is well known in the study of cosmic microwave background (CMB) and accounts for suppression of the angular power spectrum of CMB on large angular multipoles. In this article, we study the effect of Silk damping on the scalar-induced gravitational waves (SIGWs). Resulting from the dissipation of cosmic fluid, the Silk damping notably suppresses the energy-density spectrum of SIGWs on scales comparable to a diffusion scale at the decoupling time of weakly-interacting particles. The effect offers a novel observable for probing the underlying particle interaction, especially for those mediated by heavy gauge bosons beyond the standard model of particles. We anticipate that pulsar timing arrays are sensitive to gauge bosons with mass ∼ 10<sup>3</sup>–10<sup>4</sup> GeV, while space- and ground-based interferometers to those with mass ∼ 10<sup>7</sup>–10<sup>12</sup> GeV, leading to essential complements to on-going and future experiments of high-energy physics.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2499-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silk damping is well known in the study of cosmic microwave background (CMB) and accounts for suppression of the angular power spectrum of CMB on large angular multipoles. In this article, we study the effect of Silk damping on the scalar-induced gravitational waves (SIGWs). Resulting from the dissipation of cosmic fluid, the Silk damping notably suppresses the energy-density spectrum of SIGWs on scales comparable to a diffusion scale at the decoupling time of weakly-interacting particles. The effect offers a novel observable for probing the underlying particle interaction, especially for those mediated by heavy gauge bosons beyond the standard model of particles. We anticipate that pulsar timing arrays are sensitive to gauge bosons with mass ∼ 103–104 GeV, while space- and ground-based interferometers to those with mass ∼ 107–1012 GeV, leading to essential complements to on-going and future experiments of high-energy physics.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.