Quantisation via Branes and Minimal Resolution

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jian Qiu
{"title":"Quantisation via Branes and Minimal Resolution","authors":"Jian Qiu","doi":"10.1007/s00220-024-05137-w","DOIUrl":null,"url":null,"abstract":"<div><p>The ‘brane quantisation’ is a quantisation procedure developed by Gukov and Witten (Adv Theor Math Phys 13(5):1445–1518, 2009). We implement this idea by combining it with the tilting theory and the minimal resolutions. This way, we can realistically compute the deformation quantisation on the space of observables acting on the Hilbert space. We apply this procedure to certain quantisation problems in the context of generalised Kähler structure on <span>\\({\\mathbb {P}}^2\\)</span>. Our approach differs from and complements that of Bischoff and Gualtieri (Commun Math Phys 391(2):357–400, 2022). We also benefitted from an important technical tool: a combinatorial criterion for the Maurer–Cartan equation, developed by Barmeier and Wang (Deformations of path algebras of quivers with relations, 2020. arXiv:2002.10001).\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05137-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05137-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ‘brane quantisation’ is a quantisation procedure developed by Gukov and Witten (Adv Theor Math Phys 13(5):1445–1518, 2009). We implement this idea by combining it with the tilting theory and the minimal resolutions. This way, we can realistically compute the deformation quantisation on the space of observables acting on the Hilbert space. We apply this procedure to certain quantisation problems in the context of generalised Kähler structure on \({\mathbb {P}}^2\). Our approach differs from and complements that of Bischoff and Gualtieri (Commun Math Phys 391(2):357–400, 2022). We also benefitted from an important technical tool: a combinatorial criterion for the Maurer–Cartan equation, developed by Barmeier and Wang (Deformations of path algebras of quivers with relations, 2020. arXiv:2002.10001).

通过枝蔓和最小分辨率量化
布莱恩量子化 "是古可夫和威滕(Adv Theor Math Phys 13(5):1445-1518, 2009)提出的一种量子化程序。我们将这一想法与倾斜理论和最小分辨率结合起来加以实现。这样,我们就能在作用于希尔伯特空间的可观测空间上真实地计算形变量子化。我们将这一过程应用于 \({\mathbb {P}}^2\) 上广义凯勒结构背景下的某些量子化问题。我们的方法不同于比肖夫和瓜尔蒂耶里(Commun Math Phys 391(2):357-400, 2022)的方法,也是对其方法的补充。我们还得益于一个重要的技术工具:由 Barmeier 和 Wang 开发的毛勒-卡尔坦方程的组合准则(Deformations of path algebras of quivers with relations, 2020. arXiv:2002.10001)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信