{"title":"Krylov complexity of fermion chain in double-scaled SYK and power spectrum perspective","authors":"Takanori Anegawa, Ryota Watanabe","doi":"10.1007/JHEP11(2024)026","DOIUrl":null,"url":null,"abstract":"<p>We investigate Krylov complexity of the fermion chain operator which consists of multiple Majorana fermions in the double-scaled SYK (DSSYK) model with finite temperature. Using the fact that Krylov complexity is computable from two-point functions, the analysis is performed in the limit where the two-point function becomes simple and we compare the results with those of other previous studies. We confirm the exponential growth of Krylov complexity in the very low temperature regime. In general, Krylov complexity grows at most linearly at very late times in any system with a bounded energy spectrum. Therefore, we have to focus on the initial growth to see differences in the behaviors of systems or operators. Since the DSSYK model is such a bounded system, its chaotic nature can be expected to appear as the initial exponential growth of the Krylov complexity. In particular, the time at which the initial exponential growth of Krylov complexity terminates is independent of the number of degrees of freedom. More generally, and not limited to the DSSYK model, we systematically and specifically study the Lanczos coefficients and Krylov complexity using a toy power spectrum and deepen our understanding of those initial behaviors. In particular, we confirm that the overall sech-like behavior of the power spectrum shows the initial linear growth of the Lanczos coefficient, even when the energy spectrum is bounded.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)026.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)026","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate Krylov complexity of the fermion chain operator which consists of multiple Majorana fermions in the double-scaled SYK (DSSYK) model with finite temperature. Using the fact that Krylov complexity is computable from two-point functions, the analysis is performed in the limit where the two-point function becomes simple and we compare the results with those of other previous studies. We confirm the exponential growth of Krylov complexity in the very low temperature regime. In general, Krylov complexity grows at most linearly at very late times in any system with a bounded energy spectrum. Therefore, we have to focus on the initial growth to see differences in the behaviors of systems or operators. Since the DSSYK model is such a bounded system, its chaotic nature can be expected to appear as the initial exponential growth of the Krylov complexity. In particular, the time at which the initial exponential growth of Krylov complexity terminates is independent of the number of degrees of freedom. More generally, and not limited to the DSSYK model, we systematically and specifically study the Lanczos coefficients and Krylov complexity using a toy power spectrum and deepen our understanding of those initial behaviors. In particular, we confirm that the overall sech-like behavior of the power spectrum shows the initial linear growth of the Lanczos coefficient, even when the energy spectrum is bounded.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).