Perturbations of classical fields by gravitational shockwaves

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
D. V. Fursaev, E. A. Davydov, I. G. Pirozhenko, V. A. Tainov
{"title":"Perturbations of classical fields by gravitational shockwaves","authors":"D. V. Fursaev,&nbsp;E. A. Davydov,&nbsp;I. G. Pirozhenko,&nbsp;V. A. Tainov","doi":"10.1007/JHEP11(2024)039","DOIUrl":null,"url":null,"abstract":"<p>Gravitational shockwaves are geometries where components of the transverse curvature have abrupt behaviour across null hypersurfaces, which are fronts of the waves. We develop a general approach to describe classical field theories on such geometries in a linearized approximation, by using free scalar fields as a model. Perturbations caused by shockwaves exist above the wave front and are solutions to a characteristic Cauchy problem with initial data on the wave front determined by a supertranslation of ingoing fields. A special attention is paid to perturbations of fields of point-like sources generated by plane-fronted gravitational shockwaves. One has three effects: conversion of non-stationary perturbations into an outgoing radiation, a spherical scalar shockwave which appears when the gravitational wave hits the source, and a plane scalar shockwave accompanying the initial gravitational wave. Our analysis is applicable to gravitational shockwaves of a general class including geometries sourced by null particles and null branes.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)039.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)039","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Gravitational shockwaves are geometries where components of the transverse curvature have abrupt behaviour across null hypersurfaces, which are fronts of the waves. We develop a general approach to describe classical field theories on such geometries in a linearized approximation, by using free scalar fields as a model. Perturbations caused by shockwaves exist above the wave front and are solutions to a characteristic Cauchy problem with initial data on the wave front determined by a supertranslation of ingoing fields. A special attention is paid to perturbations of fields of point-like sources generated by plane-fronted gravitational shockwaves. One has three effects: conversion of non-stationary perturbations into an outgoing radiation, a spherical scalar shockwave which appears when the gravitational wave hits the source, and a plane scalar shockwave accompanying the initial gravitational wave. Our analysis is applicable to gravitational shockwaves of a general class including geometries sourced by null particles and null branes.

引力冲击波对经典场的扰动
引力冲击波是指横向曲率分量在空超曲面(即波的前沿)上具有突然行为的几何图形。我们利用自由标量场作为模型,开发了一种通用方法,以线性化近似描述这种几何上的经典场论。冲击波引起的扰动存在于波前上方,是特征考奇问题的解,波前的初始数据由进入场的超平移决定。我们特别关注平面引力冲击波产生的点状源场扰动。其中有三种效应:非稳态扰动转化为外向辐射、引力波撞击源时出现的球面标量冲击波以及伴随初始引力波的平面标量冲击波。我们的分析适用于一般类别的引力冲击波,包括由空粒子和空支链产生的几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信