Lei Shi, Haiyang Qiao, Xiao Yang, Bin Zhang, Jianwei Zhang
{"title":"Experimental investigation of fracture permeability reduction process by MICP technology with Sporosarcina pasteurii cultured by different mediums","authors":"Lei Shi, Haiyang Qiao, Xiao Yang, Bin Zhang, Jianwei Zhang","doi":"10.1007/s11440-024-02425-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study conducted a detailed investigation on the influence of the culture medium type on the permeability reduction effect through microbial-induced calcium carbonate precipitation (MICP) technology in a single rough fracture. The differences between the Sporosarcina pasteurii cultured by two mediums were compared in terms of bacterial growth properties, permeability treatment effects, distribution characteristics of induced CaCO<sub>3</sub>, and microscopic crystal characteristics. The study revealed that the culture medium did indeed impact the permeability reduction effect when treated with MICP technology, primarily related to whether urea is added in the culture medium. Two distinct permeability reduction modes were proposed for the treatment process using Sporosarcina pasteurii cultured by different mediums through one-phase injection (mixing bacterial solution and cementing solution). The permeability decreased rapidly, and the distribution of induced CaCO<sub>3</sub> was uneven after treatment with Sporosarcina pasteurii cultured in medium containing urea, while the permeability decreased relatively slowly and the induced CaCO<sub>3</sub> distribution was relatively uniform when treated with Sporosarcina pasteurii cultured in medium without urea. Additionally, differences in crystal morphology were observed due to variations in seepage characteristics during the treatment process with the Sporosarcina pasteurii cultured by different mediums. Finally, some investigations were given to the treatment effect optimization for the treatment process of Sporosarcina pasteurii cultured in medium containing urea. This study gave an insight to the regulation mechanism of culture medium and treatment method for the process of permeability reduction by MICP technology in the rock fracture.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7349 - 7368"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02425-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducted a detailed investigation on the influence of the culture medium type on the permeability reduction effect through microbial-induced calcium carbonate precipitation (MICP) technology in a single rough fracture. The differences between the Sporosarcina pasteurii cultured by two mediums were compared in terms of bacterial growth properties, permeability treatment effects, distribution characteristics of induced CaCO3, and microscopic crystal characteristics. The study revealed that the culture medium did indeed impact the permeability reduction effect when treated with MICP technology, primarily related to whether urea is added in the culture medium. Two distinct permeability reduction modes were proposed for the treatment process using Sporosarcina pasteurii cultured by different mediums through one-phase injection (mixing bacterial solution and cementing solution). The permeability decreased rapidly, and the distribution of induced CaCO3 was uneven after treatment with Sporosarcina pasteurii cultured in medium containing urea, while the permeability decreased relatively slowly and the induced CaCO3 distribution was relatively uniform when treated with Sporosarcina pasteurii cultured in medium without urea. Additionally, differences in crystal morphology were observed due to variations in seepage characteristics during the treatment process with the Sporosarcina pasteurii cultured by different mediums. Finally, some investigations were given to the treatment effect optimization for the treatment process of Sporosarcina pasteurii cultured in medium containing urea. This study gave an insight to the regulation mechanism of culture medium and treatment method for the process of permeability reduction by MICP technology in the rock fracture.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.