{"title":"Size winding mechanism beyond maximal chaos","authors":"Tian-Gang Zhou, Yingfei Gu, Pengfei Zhang","doi":"10.1007/JHEP11(2024)044","DOIUrl":null,"url":null,"abstract":"<p>The concept of information scrambling elucidates the dispersion of local information in quantum many-body systems, offering insights into various physical phenomena such as wormhole teleportation. This phenomenon has spurred extensive theoretical and experimental investigations. Among these, the size-winding mechanism emerges as a valuable diagnostic tool for optimizing signal detection. In this work, we establish a computational framework for determining the winding size distribution in all-to-all interacting quantum systems, utilizing the scramblon effective theory. We obtain the winding size distribution for the large-<i>q</i> SYK model across the entire time domain, where potential late-time corrections can be crucial for finite-<i>N</i> systems. Notably, we unveil that the manifestation of size winding results from a universal phase factor in the scramblon propagator, highlighting the significance of the Lyapunov exponent. These findings contribute to a sharp and precise connection between operator dynamics and the phenomenon of wormhole teleportation.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)044.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)044","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of information scrambling elucidates the dispersion of local information in quantum many-body systems, offering insights into various physical phenomena such as wormhole teleportation. This phenomenon has spurred extensive theoretical and experimental investigations. Among these, the size-winding mechanism emerges as a valuable diagnostic tool for optimizing signal detection. In this work, we establish a computational framework for determining the winding size distribution in all-to-all interacting quantum systems, utilizing the scramblon effective theory. We obtain the winding size distribution for the large-q SYK model across the entire time domain, where potential late-time corrections can be crucial for finite-N systems. Notably, we unveil that the manifestation of size winding results from a universal phase factor in the scramblon propagator, highlighting the significance of the Lyapunov exponent. These findings contribute to a sharp and precise connection between operator dynamics and the phenomenon of wormhole teleportation.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).