Kaikai Ba, Hongda Li, Kai Zhang, Yanhong Lin, Wanchun Zhu and Tengfeng Xie
{"title":"In situ formation of a Co-MOF/Ti–Fe2O3 photoanode for efficient photoelectrochemical water splitting†","authors":"Kaikai Ba, Hongda Li, Kai Zhang, Yanhong Lin, Wanchun Zhu and Tengfeng Xie","doi":"10.1039/D4TC01728E","DOIUrl":null,"url":null,"abstract":"<p >As a promising approach to convert solar energy into a low-cost form, photoelectrochemical (PEC) water splitting is attracting a lot of attention from researchers. However, the PEC hydrogen production is limited by the oxygen evolution reaction. Therefore, it is necessary to find effective means to accelerate the water oxidation kinetics of photoanodes. In this work, a Co-MOF cocatalyst was modified onto Ti–Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> photoanodes using a simple hydrothermal method, which allowed greater adsorption and exposure of cobalt species with high catalytic activity. The composite photoanode Co-MOF/Ti–Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> demonstrates a higher photocurrent density of 3.9 mA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> RHE, promoting water oxidation kinetics and the transfer of photogenerated carriers. This work provides an effective approach for constructing high-performance photoanodes using metal–organic framework materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc01728e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a promising approach to convert solar energy into a low-cost form, photoelectrochemical (PEC) water splitting is attracting a lot of attention from researchers. However, the PEC hydrogen production is limited by the oxygen evolution reaction. Therefore, it is necessary to find effective means to accelerate the water oxidation kinetics of photoanodes. In this work, a Co-MOF cocatalyst was modified onto Ti–Fe2O3 photoanodes using a simple hydrothermal method, which allowed greater adsorption and exposure of cobalt species with high catalytic activity. The composite photoanode Co-MOF/Ti–Fe2O3 demonstrates a higher photocurrent density of 3.9 mA cm−2 at 1.23 V vs. RHE, promoting water oxidation kinetics and the transfer of photogenerated carriers. This work provides an effective approach for constructing high-performance photoanodes using metal–organic framework materials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.